Concept explainers
There is a 250-m-high cliff at Half Dome in Yosemite National Park in California. Suppose a boulder breaks loose from the top of this cliff. (a) How fast will it be going when it strikes the ground? (b) Assuming a reaction time of 0.300 s, how long will a tourist at the bottom have to get out of the way after hearing the sound of the rock breaking loose (neglecting the height of the tourist, which would become negligible anyway if hit)? The speed of sound is 335 m/s on this day.
Trending nowThis is a popular solution!
Chapter 2 Solutions
College Physics
Additional Science Textbook Solutions
Microbiology: An Introduction
Genetic Analysis: An Integrated Approach (3rd Edition)
Chemistry: The Central Science (14th Edition)
Human Anatomy & Physiology (2nd Edition)
Organic Chemistry (8th Edition)
Microbiology: An Introduction
- Suppose the caravan of 10 cars begins immediately in front of the first toll booth, travels 20 km to a second toll booth, then another 40 km to a third toll booth, and finally stops immediately after the third tool booth. Thus, they travel a total of 60 km. What is the total end-to-end delay? Where is the last car in the caravan after one hour? Your answer must include a distance/specific location, and not only a relative direction.arrow_forwardOn February 15, 2013, a superbolide meteor (brighter than the Sun) entered Earth’s atmosphere over Chelyabinsk, Russia, and exploded at an altitude of 23.5 km. Eyewitnesses could feel the intense heat from the fireball, and the blast wave from the explosion blew out windows in buildings. The blast wave took approximately 2 minutes 30 seconds to reach ground level. (a) What was the average velocity of the blast wave? b) Compare this with the speed of sound, which is 343 m/s at sea level.arrow_forward-L.1971+38.67 Time (in seconds) The driver of a vehicle applies the brakes, softly at first, then harder, coming to a complete stop after 7 sec. The velocity as a function of time is modeled by the function v(t) = -1.197t² + 58.67,. where v is in feet per second, t is in seconds and 0sis 7. How far did the vehicle travel while the driver was braking? Velocity (in feet per second)arrow_forward
- A ball is thrown straight up with an initial velocity of 40 m/s, so that its height (in meters) after t seconds is: h(t)=2t(20-t) I don't have answer pages at the end, so ill need an explanation as well, please. Thanksarrow_forwardA person's reaction time is generally not quick enough to allow the person to catch a $1 bill dropped between the fingers. The 16 cm cm length of the bill passes through a student’s fingers before she can grab it if she has 0.25 s s reaction time. If a reaction time in this case is 0.25 ss , how long would a bill need to be for her to have a good chance of catching it?arrow_forward(a) A soccer player kicks a rock horizontally off a 35 m high cliff into a pool of water. If the player hears the sound of the splash 2.84 s later, what was the initial speed given to the rock (in m/s)? Assume the speed of sound in air is 343 m/s. m/s (b) What If? If the temperature near the cliff suddenly falls to 0°C, reducing the speed of sound to 331 m/s, what would the initial speed of the rock have to be (in m/s) for the soccer player to hear the sound of the splash 2.84 s after kicking the rock? m/s Need Help? Read It Watch Itarrow_forward
- In World War II, there were several reported cases of airmen who jumped from their flaming airplanes with no parachute to escape certain death. Some fell about 20,000 feet (6000 m), and some of them survived, with few life- threatening injuries. For these lucky pilots, the tree branches and snow drifts on the ground allowed their deceleration to be relatively small. If we assume that a pilot's speed upon impact was 123 mph (54 m/s), then what was his deceleration? Assume that the trees and snow stopped him over a distance of 3.0 m.arrow_forwardIma Rilla Saari is cruising at 28.0 m/s down Lake Avenue and through the forest preserve. She notices a deer jump into the road at a location 62.0 m in front of her. Ima first reacts to the event, then slams on her brakes and decelerates at -8.10 m/s2, and ultimately stops a picometer in front of the frozen deer. What is Ima's reaction time? (i.e., how long did it take Ima to react to the event prior to decelerating?)arrow_forward(a) A soccer player kicks a rock horizontally off a 44 m high cliff into a pool of water. If the player hears the sound of the splash 3.19 s later, what was the initial speed given to the rock (in m/s)? Assume the speed of sound in air is 343 m/s. m/s (b) What If? If the temperature near the cliff suddenly falls to 0°C, reducing the speed of sound to 331 m/s, what would the initial speed of the rock have to be (in m/s) for the soccer player to hear the sound of the splash 3.19 s after kicking the rock? m/sarrow_forward
- Earthquakes produce several types of shock waves. The most well known are the P-waves (P for primary or pressure) and the S-waves (S for secondary or shear). In the earth’s crust, P-waves travel at about 6.5 km>s and S-waves move at about 3.5 km/s. The time delay between the arrival of these two waves at a seismic recording station tells geologists how far away an earthquake occurred. If the time delay is 33 s, how far from the seismic station did the earthquake occur?arrow_forwarda car moving on a straight road with a=6-2t (0<t<6 ,containing 0 and 6);in t=0 the displacement and velocity are 3m and 8m/s. a)what is maximum velocity? (whole time interval 0 until 6) b)the car, how much goes far in t=0 until t=6?arrow_forwardSpeedy Sue, driving at 32.0 m/s, enters a one-lane tunnel. She then observes a slow-moving van 175 m ahead traveling at 5.30 m/s. Sue applies her brakes but can accelerate only at −1.10 m/s2 because the road is wet. Will there be a collision? If yes, determine how far into the tunnel and at what time the collision occurs. If no, determine the distance of closest approach between Sue's car and the van. (If no, enter "0" for the time.)arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON