
Concept explainers
Just as car A is starting up, it is passed by car B. Car B travels with a constant velocity of 7 m/s, while car A accelerates with a constant acceleration of 4.2 m/s2, starting from rest.
- a. Compute the distance traveled by each car for times of 1 s, 2 s, 3 s, and 4 s.
- b. At what time, approximately, does car A overtake car B?
- c. How might you go about finding this time exactly? Explain.
(a)

The distance travelled by the car at various times.
Answer to Problem 5SP
The distances travelled by the car at various times are calculated using Newton’s equations of motion.
Explanation of Solution
Given info: Velocity of the car B is 7 m/s and acceleration of car A is
Write the expression for distance.
Here,
v is the final velocity
t is the initial time
s is the distance
Car A starts from rest. Hence, initial velocity is zero. Car B travels with constant velocity. Hence, its acceleration is zero.
For Car A,
Write the expression for distance.
Here,
t is the initial time
s is the distance
a is the acceleration
At 1s,
Substitute 1s for t and
At 2s,
Substitute 2s for t and
At 3s,
Substitute 3s for t and
At 4s,
Substitute 4s for t and
For Car B,
Write the expression for distance.
Here,
t is the initial time
s is the distance
v is the velocity
At 1s,
Substitute 1s for t and 7 m/s for v to get s.
At 2s,
Substitute 2s for t and 7 m/s for v to get s.
At 3s,
Substitute 3s for t and 7 m/s for v to get s.
At 4s,
Substitute 4s for t and 7 m/s for v to get s.
Conclusion:
The distances travelled by the car at various times are calculated using Newton’s equations of motion.
(b)

The time when Car A overtakes Car B.
Answer to Problem 5SP
Car A overtakes Car B between the interval 3s and 4s.
Explanation of Solution
From (a), it can be observed that the distance travelled by car A is more than that of car B at 4s. Hence, it is evident that somewhere between 3s and 4s, car A must have overtaken car B.
Conclusion:
Car A overtakes Car B between the interval 3s and 4s.
(c)

The time at which car A overtakes car B.
Answer to Problem 5SP
The time at which car A overtakes car B is
Explanation of Solution
Given info: Velocity of the car B is 7 m/s and acceleration of car A is
Equate the expressions for distances travelled by car A and car B.
Re-arrange the above equation to get t.
Substitute 7 m/s for v and
Conclusion:
The time at which car A overtakes car B is
Want to see more full solutions like this?
Chapter 2 Solutions
Physics of Everyday Phenomena
- 20. Two small conducting spheres are placed on top of insulating pads. The 3.7 × 10-10 C sphere is fixed whie the 3.0 × 107 C sphere, initially at rest, is free to move. The mass of each sphere is 0.09 kg. If the spheres are initially 0.10 m apart, how fast will the sphere be moving when they are 1.5 m apart?arrow_forwardpls help on allarrow_forwardpls help on thesearrow_forward
- pls help on all asked questions kindlyarrow_forwardpls help on all asked questions kindlyarrow_forward19. Mount Everest, Earth's highest mountain above sea level, has a peak of 8849 m above sea level. Assume that sea level defines the height of Earth's surface. (re = 6.38 × 106 m, ME = 5.98 × 1024 kg, G = 6.67 × 10 -11 Nm²/kg²) a. Calculate the strength of Earth's gravitational field at a point at the peak of Mount Everest. b. What is the ratio of the strength of Earth's gravitational field at a point 644416m below the surface of the Earth to a point at the top of Mount Everest? C. A tourist watching the sunrise on top of Mount Everest observes a satellite orbiting Earth at an altitude 3580 km above his position. Determine the speed of the satellite.arrow_forward
- pls help on allarrow_forwardpls help on allarrow_forward6. As the distance between two charges decreases, the magnitude of the electric potential energy of the two-charge system: a) Always increases b) Always decreases c) Increases if the charges have the same sign, decreases if they have the opposite signs d) Increases if the charges have the opposite sign, decreases if they have the same sign 7. To analyze the motion of an elastic collision between two charged particles we use conservation of & a) Energy, Velocity b) Momentum, Force c) Mass, Momentum d) Energy, Momentum e) Kinetic Energy, Potential Energyarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College





