
Concept explainers
A car traveling in a straight line with an initial velocity of 10 m/s accelerates at a rate of 3.0 m/s2 to a velocity of 34 m/s.
- a. How much time does it take for the car to reach the velocity of 34 m/s?
- b. What is the distance covered by the car in this process?
- c. Compute values of the distance traveled at 1-second intervals and carefully draw a graph of distance plotted against time for this motion.
(a)

The time taken for the car to reach the velocity of 34 m/s.
Answer to Problem 4SP
The time taken for the car to reach the velocity of 34 m/s is
Explanation of Solution
Given info: Initial velocity of the car is 10 m/s, acceleration is
Write the expression for Newton’s equation of motion.
Here,
v is the final velocity
t is the initial time
a is the acceleration
Re-arrange the above equation to get t.
Substitute 34 m/s for v, 10 m/s for
Conclusion:
The time taken for the car to reach the velocity of 34 m/s is
(b)

The distance covered by the the car.
Answer to Problem 4SP
The distance covered by the car is
Explanation of Solution
Given info: Initial velocity of the car is 10 m/s, acceleration is
Write the expression for distance.
Here,
v is the final velocity
t is the initial time
s is the distance
Substitute 8s for t, 10 m/s for
The distance covered by the car is
(c)

To plot: The graph of distance versus time.
Answer to Problem 4SP
Distance is plotted against time in the graph.
Explanation of Solution
Write the expression for distance.
At 0s,
Substitute 0s for t, 10 m/s for
At 1s,
Substitute 1s for t, 10 m/s for
At 2s,
Substitute 2s for t, 10 m/s for
At 3s,
Substitute 3s for t, 10 m/s for
At 4s,
Substitute 4s for t, 10 m/s for
At 5s,
Substitute 5s for t, 10 m/s for
At 6s,
Substitute 6s for t, 10 m/s for
At 7s,
Substitute 7s for t, 10 m/s for
At 8s,
Substitute 8s for t, 10 m/s for
The above values are plotted in the below graph.
Conclusion:
Distance is plotted against time in the graph.
Want to see more full solutions like this?
Chapter 2 Solutions
Physics of Everyday Phenomena
- simple diagram to illustrate the setup for each law- coulombs law and biot savart lawarrow_forwardA circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forwardAn L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forward
- A long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forwardDescribe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forwardDiscuss the differences between the Biot-Savart law and Coulomb’s law in terms of their applicationsand the physical quantities they describe.arrow_forward
- Explain why Ampere’s law can be used to find the magnetic field inside a solenoid but not outside.arrow_forward3. An Atwood machine consists of two masses, mA and m B, which are connected by an inelastic cord of negligible mass that passes over a pulley. If the pulley has radius RO and moment of inertia I about its axle, determine the acceleration of the masses mA and m B, and compare to the situation where the moment of inertia of the pulley is ignored. Ignore friction at the axle O. Use angular momentum and torque in this solutionarrow_forwardA 0.850-m-long metal bar is pulled to the right at a steady 5.0 m/s perpendicular to a uniform, 0.650-T magnetic field. The bar rides on parallel metal rails connected through a 25-Ω, resistor (Figure 1), so the apparatus makes a complete circuit. Ignore the resistance of the bar and the rails. Please explain how to find the direction of the induced current.arrow_forward
- For each of the actions depicted, determine the direction (right, left, or zero) of the current induced to flow through the resistor in the circuit containing the secondary coil. The coils are wrapped around a plastic core. Immediately after the switch is closed, as shown in the figure, (Figure 1) in which direction does the current flow through the resistor? If the switch is then opened, as shown in the figure, in which direction does the current flow through the resistor? I have the answers to the question, but would like to understand the logic behind the answers. Please show steps.arrow_forwardWhen violet light of wavelength 415 nm falls on a single slit, it creates a central diffraction peak that is 8.60 cm wide on a screen that is 2.80 m away. Part A How wide is the slit? ΟΙ ΑΣΦ ? D= 2.7.10-8 Submit Previous Answers Request Answer × Incorrect; Try Again; 8 attempts remaining marrow_forwardTwo complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find θ for (z1-z∗2)/z1+z2∗. Find r and θ for (z1−z2∗)z1z2∗ Please show all stepsarrow_forward
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





