Concept explainers
A model rocket is launched straight upward with an initial speed of 50.0 m/s. It accelerates with a constant upward acceleration of 2.00 m/s2 until its engines stop at an altitude of 150. m. (a) What can you say about, the motion of the rocket alter its engines stop? (b) What is the maximum height reached by the rocket? (c) How long after liftoff does the rocket reach its maximum height? (d) How long is the rocket in the air?
(a)
Answer to Problem 53P
Explanation of Solution
The motion of the rocket can be determined using the acceleration of the rocket.
When the rocket moves upwards, then the engines forces the rocket to move upwards. When there is no external force acting on the rocket, the rocket is moving under the gravitational force. The magnitude of the acceleration acting on the rocket is the acceleration due to gravity. The acceleration due to gravity acts always downwards.
When the engine stops, the rocket starts moves under the acceleration due to gravity and which is opposite to the direction of the motion. This will slow down the rocket. As the rocket reaches its maximum height, the rocket has zero velocity. Then it falls under gravity. The acceleration and the motion of the rocket go on the same direction. This results in speeding up the rocket from zero to the maximum speed when it reaches the ground.
Conclusion:
After its engines stop, the rocket is a freely falling body under gravity. It continues upward and eventually slows under the influence of gravity. The rocket comes to rest momentarily at its maximum altitude. Then it falls back to Earth, gaining speed as it falls due to the acceleration due to gravity.
(b)
Answer to Problem 53P
Explanation of Solution
Given info: The initial velocity of the of the rocket is
Explanation:
The formula used to calculate the final velocity of the rocket when it is accelerating upwards is,
Here,
Substitute
Thus, The final velocity of the rocket when the engine stops is
The formula used to calculate the displacement of the rocket after the engine stops is,
Here,
Substitute
Thus, The displacement of the rocket after the engine stops is
The formula used to calculate the maximum height the rocket reaches is,
Here,
Substitute
Thus, the maximum height the rocket reaches is
Conclusion:
The maximum height the rocket reaches is
(c)
Answer to Problem 53P
Explanation of Solution
The formula used to calculate the interval at which the rocket moves with an upward acceleration is,
Here,
Substitute
Thus, the time interval at which the rocket has upward acceleration is
The formula used to calculate the interval at which the rocket moves upwards after the engine stops is,
Here,
Substitute
Thus, the time interval at which the rocket moves upward after the engine stops is
The formula used to calculate the total time of the upward flight is,
Here,
Substitute
Thus, the time taken by the rocket to reach the maximum height
Conclusion:
The time taken by the rocket to reach the maximum height
(d)
Answer to Problem 53P
Explanation of Solution
The formula used to calculate the total time of the downward flight is,
Here,
Substitute
Thus, the total time of the downward flight is
The formula used to calculate the total time of flight is,
Here,
Substitute
Thus, the total time the rocket stays in air
Conclusion:
The total time the rocket stays in air
Want to see more full solutions like this?
Chapter 2 Solutions
WebAssign Printed Access Card for Serway/Vuille's College Physics, 11th Edition, Multi-Term
Additional Science Textbook Solutions
Essentials of Human Anatomy & Physiology (12th Edition)
Fundamentals Of Thermodynamics
Loose Leaf For Integrated Principles Of Zoology
MARINE BIOLOGY
Biology: Life on Earth (11th Edition)
- Question B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…arrow_forwardSECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]arrow_forwardPage 2 SECTION A Answer ALL questions in Section A [Expect to use one single-sided A4 page for each Section-A sub question.] Question A1 SPA6308 (2024) Consider Minkowski spacetime in Cartesian coordinates th = (t, x, y, z), such that ds² = dt² + dx² + dy² + dz². (a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V. (b) Consider now the coordinate system x' (u, v, y, z) such that u =t-x, v=t+x. [2 marks] Write down the line element, the metric, the Christoffel symbols and the Riemann curvature tensor in the new coordinates. [See the Appendix of this document.] [5 marks] (c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify explicitly that V. V is invariant under the coordinate transformation. Question A2 [5 marks] Suppose that A, is a covector field, and consider the object Fv=AAμ. (a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a coordinate transformation. [5 marks] (b)…arrow_forward
- No chatgpt pls will upvote Iarrow_forwardHow would partial obstruction of an air intake port of an air-entrainment mask effect FiO2 and flow?arrow_forward14 Z In figure, a closed surface with q=b= 0.4m/ C = 0.6m if the left edge of the closed surface at position X=a, if E is non-uniform and is given by € = (3 + 2x²) ŷ N/C, calculate the (3+2x²) net electric flux leaving the closed surface.arrow_forward
- No chatgpt pls will upvotearrow_forwardsuggest a reason ultrasound cleaning is better than cleaning by hand?arrow_forwardCheckpoint 4 The figure shows four orientations of an electric di- pole in an external electric field. Rank the orienta- tions according to (a) the magnitude of the torque on the dipole and (b) the potential energy of the di- pole, greatest first. (1) (2) E (4)arrow_forward
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College