(a)
Interpretation:
The number of protons and electrons in a N2 molecule needs to be deduced
Concept Introduction:
- Every system found in nature is a composite of atoms, molecules, ions or other particles
- These are composed of fundamental subatomic particles: protons, neutrons and electrons.
- Each atom is characterized by two quantities:
Atomic number (Z) andatomic mass (A)
Z = atomic number = number of protons = number of electrons ------ (1)
A = atomic mass = number of protons + number of neutrons ------ (2)
For an ion: number of electrons = number of protons + charge on the ion ------ (3)
(b)
Interpretation:
The number of protons and electrons in
Concept Introduction:
- Every system found in nature is a composite of atoms, molecules, ions or other particles
- These are composed of fundamental subatomic particles: protons, neutrons and electrons.
- Each atom is characterized by two quantities: Atomic number (Z) and atomic mass (A)
Z = atomic number = number of protons = number of electrons ------ (1)
A = atomic mass = number of protons + number of neutrons ------ (2)
For an anion: number of electrons = number of protons + charge on the ion ------ (3)
For a cation: number of electrons = number of protons - charge on the ion ------ (4)
(c)
Interpretation:
The number of protons and electrons in
Concept Introduction:
- Every system found in nature is a composite of atoms, molecules, ions or other particles
- These are composed of fundamental subatomic particles: protons, neutrons and electrons.
- Each atom is characterized by two quantities: Atomic number (Z) and atomic mass (A)
Z = atomic number = number of protons = number of electrons ------ (1)
A = atomic mass = number of protons + number of neutrons ------ (2)
For an anion: number of electrons = number of protons + charge on the ion ------ (3)
For a cation: number of electrons = number of protons - charge on the ion ------ (4)
(d)
Interpretation:
The number of protons and electrons in a N5N5 salt needs to be deduced
Concept Introduction:
- Every system found in nature is a composite of atoms, molecules, ions or other particles
- These are composed of fundamental subatomic particles: protons, neutrons and electrons.
- Each atom is characterized by two quantities: Atomic number (Z) and atomic mass (A)
Z = atomic number = number of protons = number of electrons ------ (1)
A = atomic mass = number of protons + number of neutrons ------ (2)
For an anion: number of electrons = number of protons + charge on the ion ------ (3)
For a cation: number of electrons = number of protons - charge on the ion ------ (4)

Trending nowThis is a popular solution!

Chapter 2 Solutions
PRINCIPLES+REACTIONS
- The following equations represent the formation of compound MX. What is the AH for the electron affinity of X (g)? X₂ (g) → 2X (g) M (s) → M (g) M (g) M (g) + e- AH = 60 kJ/mol AH = 22 kJ/mol X (g) + e-X (g) M* (g) +X (g) → MX (s) AH = 118 kJ/mol AH = ? AH = -190 kJ/mol AH = -100 kJ/mol a) -80 kJ b) -30 kJ c) -20 kJ d) 20 kJ e) 156 kJarrow_forwardA covalent bond is the result of the a) b) c) d) e) overlap of two half-filled s orbitals overlap of a half-filled s orbital and a half-filled p orbital overlap of two half-filled p orbitals along their axes parallel overlap of two half-filled parallel p orbitals all of the abovearrow_forwardCan the target compound at right be efficiently synthesized in good yield from the unsubstituted benzene at left? starting material target If so, draw a synthesis below. If no synthesis using reagents ALEKS recognizes is possible, check the box under the drawing area. Be sure you follow the standard ALEKS rules for submitting syntheses. + More... Note for advanced students: you may assume that you are using a large excess of benzene as your starting material. C T Add/Remove step X ноarrow_forward
- Which one of the following atoms should have the largest electron affinity? a) b) c) d) 으으 e) 1s² 2s² 2p6 3s¹ 1s² 2s² 2p5 1s² 2s² 2p 3s² 3p² 1s² 2s 2p 3s² 3p6 4s2 3ds 1s² 2s² 2p6arrow_forwardAll of the following are allowed energy levels except _. a) 3f b) 1s c) 3d d) 5p e) 6sarrow_forwardA student wants to make the following product in good yield from a single transformation step, starting from benzene. Add any organic reagents the student is missing on the left-hand side of the arrow, and any addition reagents that are necessary above or below the arrow. If this product can't be made in good yield with a single transformation step, check the box below the drawing area. Note for advanced students: you may assume that an excess of benzene is used as part of the reaction conditions. : ☐ + I X This product can't be made in a single transformation step.arrow_forward
- Ppplllleeeaaasssseeee helllppp wiithhh thisss Organic chemistryyyyyy I talked like this because AI is very annoyingarrow_forwardName the family to which each organic compound belongs. The first answer has been filled in for you. compound CH₂ || CH3-C-NH2 0 ။ CH3-C-CH₂ CH=O–CH=CH, CH₂ HO CH2-CH2-CH-CH3 family amine Darrow_forward1b. Br LOHarrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningOrganic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





