(a)
Interpretation:
The names of the given ionic compounds are needed to be determined.
Concept introduction:
Naming of ions:
Positive ions (cations) are named as metal name, example: aluminum for aluminum cation.
But, for the
Negative ions (anions) are named by adding ‘ide’ to the stem of the nonmetal element from which the anion is formed, example: chloride, bromide, etc. in case of poly anions, the oxoanions series is named by checking the number of oxygen atom is present in it. If the oxoanion is having greater number of oxygen, then suffix will be ‘ate’. If the number of oxygen atom is less, then the suffix will be ‘ite’. And if the oxoanio is having more than elements, then prefix will be added as ‘per’ with suffix ‘ate’ ions and ‘hypo’ with suffix ‘ite’ of the oxoanions. The hydrogen containing oxoanions are named by adding ‘hydrogen’ before the name of anion part.
(b)
Interpretation:
The names of the given ionic compounds are needed to be determined.
Concept introduction:
Naming of ions:
Positive ions (cations) are named as metal name, example: aluminum for aluminum cation.
But, for the transition metals the ionic charge also included by roman numerals with the naming of compound. The polyatomic cation
Negative ions (anions) are named by adding ‘ide’ to the stem of the nonmetal element from which the anion is formed, example: chloride, bromide, etc. in case of poly anions, the oxoanions series is named by checking the number of oxygen atom is present in it. If the oxoanion is having greater number of oxygen, then suffix will be ‘ate’. If the number of oxygen atom is less, then the suffix will be ‘ite’. And if the oxoanio is having more than elements, then prefix will be added as ‘per’ with suffix ‘ate’ ions and ‘hypo’ with suffix ‘ite’ of the oxoanions. The hydrogen containing oxoanions are named by adding ‘hydrogen’ before the name of anion part.
(c)
Interpretation:
The names of the given ionic compounds are needed to be determined.
Concept introduction:
Naming of ions:
Positive ions (cations) are named as metal name, example: aluminum for aluminum cation.
But, for the transition metals the ionic charge also included by roman numerals with the naming of compound. The polyatomic cation
Negative ions (anions) are named by adding ‘ide’ to the stem of the nonmetal element from which the anion is formed, example: chloride, bromide, etc. in case of poly anions, the oxoanions series is named by checking the number of oxygen atom is present in it. If the oxoanion is having greater number of oxygen, then suffix will be ‘ate’. If the number of oxygen atom is less, then the suffix will be ‘ite’. And if the oxoanio is having more than elements, then prefix will be added as ‘per’ with suffix ‘ate’ ions and ‘hypo’ with suffix ‘ite’ of the oxoanions. The hydrogen containing oxoanions are named by adding ‘hydrogen’ before the name of anion part.
(d)
Interpretation:
The names of the given ionic compounds are needed to be determined.
Concept introduction:
Naming of ions:
Positive ions (cations) are named as metal name, example: aluminum for aluminum cation.
But, for the transition metals the ionic charge also included by roman numerals with the naming of compound. The polyatomic cation
Negative ions (anions) are named by adding ‘ide’ to the stem of the nonmetal element from which the anion is formed, example: chloride, bromide, etc. in case of poly anions, the oxoanions series is named by checking the number of oxygen atom is present in it. If the oxoanion is having greater number of oxygen, then suffix will be ‘ate’. If the number of oxygen atom is less, then the suffix will be ‘ite’. And if the oxoanio is having more than elements, then prefix will be added as ‘per’ with suffix ‘ate’ ions and ‘hypo’ with suffix ‘ite’ of the oxoanions. The hydrogen containing oxoanions are named by adding ‘hydrogen’ before the name of anion part.
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
Chemistry & Chemical Reactivity
- The number of imaginary replicas of a system of N particlesA) can never become infiniteB) can become infiniteC) cannot be greater than Avogadro's numberD) is always greater than Avogadro's number.arrow_forwardElectronic contribution to the heat capacity at constant volume A) is always zero B) is zero, except for excited levels whose energy is comparable to KT C) equals 3/2 Nk D) equals Nk exp(BE)arrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Calculate the packing factor of CaTiO3. It has a perovskite structure. Data: ionic radii Co²+ = 0.106 nm, Ti4+ = 0.064 nm, O² = 0.132 nm; lattice constant is a = 2(rTi4+ + ro2-). Ca2+ 02- T14+ Consider the ions as rigid spheres. 1. 0.581 or 58.1% 2. -0.581 or -58.1 % 3. 0.254 or 25.4%arrow_forwardGeneral formula etherarrow_forwardPlease provide the retrosynthetic analysis and forward synthesis of the molecule on the left from the starting material on the right. Please include hand-drawn structures! will upvote! Please correct answer and don't used hand raitingarrow_forward
- Please provide the retrosynthetic analysis and forward synthesis of the molecule on the left from the starting material on the right. Please include hand-drawn structures! will upvote!arrow_forward(please correct answer and don't used hand raiting) Please provide the retrosynthetic analysis and forward synthesis of the molecule on the left from the starting material on the right. Please include hand-drawn structures! will upvote!arrow_forwardCaTiO3 has a perovskite structure. Calculate the packing factor.Data: ionic radii Co+2 = 0.106 nm, Ti+4 = 0.064 nm, O-2 = 0.132 nm; lattice constant is a = 2(rTi4+ + rO-2).(a) 0.581(b) -0.581(c) 0.254(d) -0.254arrow_forward
- In the initial linear section of the stress-strain curve of a metal or alloy. Explain from the point of view of atomic structure?(a) No, the atomic level properties of the material can never be related to the linear section.(b) The elastic zone is influenced by the strength of the bonds between atoms.(c) The stronger the bond, the less rigid and the lower the Young's Modulus of the material tested.(d) The stronger the bond, the less stress is necessary to apply to the material to deform it elastically.arrow_forwardThe degree of polymerization of polytetrafluoroethylene (Teflon) is 7500 (mers/mol). If all polymer chains have equal length, state the molecular weight of the polymer and the total number of chains in 1000 g of the polymer(a) 50 000 g/mol; 0.03·1020 chains(b) 100 000 g/mol; 1.03·1020 chains(c) 750 000 g/mol; 8.03·1020 chainsarrow_forwardIn natural rubber or polyisoprene, the trans isomer leads to a higher degree of crystallinity and density than the cis isomer of the same polymer, because(a) it is more symmetrical and regular.(b) it is less symmetrical.(c) it is irregular.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY