COLLEGE PHYSICS
13th Edition
ISBN: 2810014673880
Author: OpenStax
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 39PE
In 1967, New Zealander Burt Munro set the world record for an Indian motorcycle, on the Bonneville Salt Flats in Utah, with a maximum speed of 183.58 mi/h. The one-way course was 5.00 mi long. Acceleration rates are often described by the time it takes to reach 60.0 mi/h from rest. If this time was 4.00 s, and BL11t accelerated at this rate until he reached his maximum speed, how long did it take Burt to complete the course?
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
Problem 04.08 (17 points). Answer the following questions related to the figure below.
ථි
R₁
www
R₂
E
R₁
www
ли
R₁
A Use Kirchhoff's laws to calculate the currents through each battery and resistor in
terms of R1, R2, E1, & E2.
B Given that all the resistances and EMFs have positive values, if E₁ > E2 and R₁ > R2,
which direction is the current flowing through E₁? Through R₂?
C If E1 E2 and R₁ > R2, which direction is the current flowing through E₁? Through
R2?
A 105- and a 45.0-Q resistor are connected in parallel. When this combination is
connected across a battery, the current delivered by the battery is 0.268 A. When the
45.0-resistor is disconnected, the current from the battery drops to 0.0840 A.
Determine (a) the emf and (b) the internal resistance of the battery.
10
R2
R₁
ww
R₁
Emf
14
Emf
Final circuit
Initial circuit
A ball is shot at an angle of 60° with the ground. What should be the initial velocity of the ball so that it will go inside the ring 8 meters away and 3 meters high. Suppose that you want the ball to be scored exactly at the buzzer, determine the required time to throw and shoot the ball. Full solution and figure if there is.
Chapter 2 Solutions
COLLEGE PHYSICS
Ch. 2 - Give an example in which there are clear...Ch. 2 - Under what circumstances does distance traveled...Ch. 2 - Bacteria move back and f01th by using their...Ch. 2 - A student writes, "A bird that is diving for prey...Ch. 2 - What is the speed of the bird in Exercise 2.4?Ch. 2 - Acceleration is the change in velocity over time....Ch. 2 - A weather forecast states that the temperature is...Ch. 2 - Give an example (but not one from the text) of a...Ch. 2 - There is a distinction between average speed and...Ch. 2 - Does a car's odometer measure position or...
Ch. 2 - If you divide the total distance traveled on a car...Ch. 2 - How are instantaneous velocity and instantaneous...Ch. 2 - Is it possible for speed to be constant while...Ch. 2 - Is it possible for velocity to be constant while...Ch. 2 - Give an example in which velocity is zero yet...Ch. 2 - If a subway train is moving to the left (has a...Ch. 2 - Plus and minus signs are used in one-dimensional...Ch. 2 - What information do you need in order to choose...Ch. 2 - What is the last thing you should do when solving...Ch. 2 - What is the acceleration of a rock thrown straight...Ch. 2 - An object that is thrown straight up falls back to...Ch. 2 - Suppose you throw a rock nearly straight up at a...Ch. 2 - If an object is thrown straight up and air...Ch. 2 - The severity of a fall depends on your speed when...Ch. 2 - How many times higher could an astronaut jump on...Ch. 2 - (a) Explain how you can use the graph of position...Ch. 2 - (a) Sketch a graph of velocity versus time...Ch. 2 - (a) Explain how you can determine the acceleration...Ch. 2 - (a) Sketch a graph of acceleration versus time...Ch. 2 - Consider the velocity vs. time graph of a person...Ch. 2 - A cylinder is given a push and then rolls up an...Ch. 2 - Find the following for path A in Figure 2.59: (a)...Ch. 2 - Find the following for path B in Figure 2.59: (a)...Ch. 2 - Find the following for path C in Figure 2.59: (a)...Ch. 2 - Find the following for path D in Figure 2.59: (a)...Ch. 2 - (a) Calculate Earth's average speed relative to...Ch. 2 - A helicopter blade spins at exactly 100...Ch. 2 - The North American and European continents are...Ch. 2 - Land west of the San Andreas fault in southern...Ch. 2 - On May 26, 1934, a streamlined, stainless steel...Ch. 2 - Tidal friction is slowing the rotation of the...Ch. 2 - A student drove to the university from her home...Ch. 2 - The speed of propagation of the action potential...Ch. 2 - Conversations with astronauts on the lunar surface...Ch. 2 - A football quarterback runs 15.0 m straight down...Ch. 2 - The planetary model of the atom pictures electrons...Ch. 2 - A cheetah can accelerate from rest to a speed of...Ch. 2 - Professional Application Dr. John Paul Stapp was...Ch. 2 - A commuter backs her car out of her garage with an...Ch. 2 - Assume that an intercontinental ballistic missile...Ch. 2 - An Olympic-class sprinter starts a race with an...Ch. 2 - A well-thrown ball is caught in a well-padded...Ch. 2 - A bullet in a gun is accelerated from the firing...Ch. 2 - (a) A light-rail commuter train accelerates at a...Ch. 2 - While entering a freeway, a car accelerates from...Ch. 2 - At the end of a race, a runner decelerates from a...Ch. 2 - Professional Application: Blood is accelerated...Ch. 2 - In a slap shot, a hockey player accelerates the...Ch. 2 - A powerful motorcycle can accelerate from rest to...Ch. 2 - Freight trains can produce only relatively small...Ch. 2 - A fireworks shell is accelerated from rest to a...Ch. 2 - A swan on a lake gets airborne by flapping its...Ch. 2 - Professional Application: A woodpecker's brain is...Ch. 2 - An unwary football player collides with a padded...Ch. 2 - In World War II, there were several reported cases...Ch. 2 - Consider a grey squirrel falling out of a tree to...Ch. 2 - An express train passes through a station. It...Ch. 2 - Dragsters can actually reach a top speed of 145...Ch. 2 - A bicycle racer sprints at the end of a race to...Ch. 2 - In 1967, New Zealander Burt Munro set the world...Ch. 2 - (a) A world record was set for the men's 100-m...Ch. 2 - Calculate the displacement and velocity at times...Ch. 2 - Calculate the displacement and velocity at times...Ch. 2 - A basketball referee tosses the ball straight up...Ch. 2 - A rescue helicopter is hovering over a person...Ch. 2 - A dolphin in an aquatic show jumps straight up out...Ch. 2 - A swimmer bounces straight up from a diving board...Ch. 2 - (a) Calculate the height of a cliff if it takes...Ch. 2 - A very strong, but inept, shot putter puts the...Ch. 2 - You throw a ball straight up with an initial...Ch. 2 - A kangaroo can jump over an object 2.50 m high....Ch. 2 - Standing at the base of one of the cliffs of Mt....Ch. 2 - An object is dropped from a height of 75.0 m above...Ch. 2 - There is a 250-m-high cliff at Half Dome in...Ch. 2 - A ball is thrown straight up. It passes a...Ch. 2 - Suppose you drop a rock into a dark well and,...Ch. 2 - A steel ball is dropped onto a hard floor from a...Ch. 2 - A coin is dropped from a hot-air balloon that is...Ch. 2 - A soft tennis ball is dropped onto a hard floor...Ch. 2 - (a) By taking the slope of the curve in Figure...Ch. 2 - Using approximate values, calculate the slope of...Ch. 2 - Using approximate values, calculate the slope of...Ch. 2 - By taking the slope of the curve in Figure 2.63,...Ch. 2 - Construct the displacement graph for the subway...Ch. 2 - (a) Take the slope of the curve in Figure 2.64 to...Ch. 2 - A graph of v(t) is shown for a world-class track...Ch. 2 - Figure 2.68 shows the displacement graph for a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Match the following examples of mutagens. Column A Column B ___a. A mutagen that is incorporated into DNA in pl...
Microbiology: An Introduction
5. When the phenotype of heterozygotes is intermediate between the phenotypes of the two homozygotes, this patt...
Biology: Life on Earth (11th Edition)
Distinguish between microevolution, speciation, and macroevolution.
Campbell Essential Biology (7th Edition)
What is the difference between cellular respiration and external respiration?
Human Physiology: An Integrated Approach (8th Edition)
How can the freezing of water crack boulders?
Campbell Biology in Focus (2nd Edition)
Q2. A graduated cylinder has markings every milliliter. Which measurement is accurately reported for this gradu...
Introductory Chemistry (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Correct answer please. I will upvote.arrow_forwardDefine operational amplifierarrow_forwardA bungee jumper plans to bungee jump from a bridge 64.0 m above the ground. He plans to use a uniform elastic cord, tied to a harness around his body, to stop his fall at a point 6.00 m above the water. Model his body as a particle and the cord as having negligible mass and obeying Hooke's law. In a preliminary test he finds that when hanging at rest from a 5.00 m length of the cord, his body weight stretches it by 1.55 m. He will drop from rest at the point where the top end of a longer section of the cord is attached to the bridge. (a) What length of cord should he use? Use subscripts 1 and 2 respectively to represent the 5.00 m test length and the actual jump length. Use Hooke's law F = KAL and the fact that the change in length AL for a given force is proportional the length L (AL = CL), to determine the force constant for the test case and for the jump case. Use conservation of mechanical energy to determine the length of the rope. m (b) What maximum acceleration will he…arrow_forward
- 9 V 300 Ω www 100 Ω 200 Ω www 400 Ω 500 Ω www 600 Ω ww 700 Ω Figure 1: Circuit symbols for a variety of useful circuit elements Problem 04.07 (17 points). Answer the following questions related to the figure below. A What is the equivalent resistance of the network of resistors in the circuit below? B If the battery has an EMF of 9V and is considered as an ideal batter (internal resistance is zero), how much current flows through it in this circuit? C If the 9V EMF battery has an internal resistance of 2 2, would this current be larger or smaller? By how much? D In the ideal battery case, calculate the current through and the voltage across each resistor in the circuit.arrow_forwardhelparrow_forwardIf the block does reach point B, how far up the curved portion of the track does it reach, and if it does not, how far short of point B does the block come to a stop? (Enter your answer in m.)arrow_forward
- Truck suspensions often have "helper springs" that engage at high loads. One such arrangement is a leaf spring with a helper coil spring mounted on the axle, as shown in the figure below. When the main leaf spring is compressed by distance yo, the helper spring engages and then helps to support any additional load. Suppose the leaf spring constant is 5.05 × 105 N/m, the helper spring constant is 3.50 × 105 N/m, and y = 0.500 m. Truck body yo Main leaf spring -"Helper" spring Axle (a) What is the compression of the leaf spring for a load of 6.00 × 105 N? Your response differs from the correct answer by more than 10%. Double check your calculations. m (b) How much work is done in compressing the springs? ☑ Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. Jarrow_forwardA spring is attached to an inclined plane as shown in the figure. A block of mass m = 2.71 kg is placed on the incline at a distance d = 0.285 m along the incline from the end of the spring. The block is given a quick shove and moves down the incline with an initial speed v = 0.750 m/s. The incline angle is = 20.0°, the spring constant is k = 505 N/m, and we can assume the surface is frictionless. By what distance (in m) is the spring compressed when the block momentarily comes to rest? m m 0 k wwwwarrow_forwardA block of mass m = 2.50 kg situated on an incline at an angle of k=100 N/m www 50.0° is connected to a spring of negligible mass having a spring constant of 100 N/m (Fig. P8.54). The pulley and incline are frictionless. The block is released from rest with the spring initially unstretched. Ө m i (a) How far does it move down the frictionless incline before coming to rest? m (b) What is its acceleration at its lowest point? Magnitude m/s² Direction O up the incline down the inclinearrow_forward
- (a) A 15.0 kg block is released from rest at point A in the figure below. The track is frictionless except for the portion between points B and C, which has a length of 6.00 m. The block travels down the track, hits a spring of force constant 2,100 N/m, and compresses the spring 0.250 m from its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface between points B and C. -A 3.00 m B C -6.00 m i (b) What If? The spring now expands, forcing the block back to the left. Does the block reach point B? Yes No If the block does reach point B, how far up the curved portion of the track does it reach, and if it does not, how far short of point B does the block come to a stop? (Enter your answer in m.) marrow_forwardA ball of mass m = 1.95 kg is released from rest at a height h = 57.0 cm above a light vertical spring of force constant k as in Figure [a] shown below. The ball strikes the top of the spring and compresses it a distance d = 7.80 cm as in Figure [b] shown below. Neglecting any energy losses during the collision, find the following. т m a d T m b i (a) Find the speed of the ball just as it touches the spring. 3.34 m/s (b) Find the force constant of the spring. Your response differs from the correct answer by more than 10%. Double check your calculations. kN/marrow_forwardI need help with questions 1-10 on my solubility curve practice sheet. I tried to my best ability on the answers, however, i believe they are wrong and I would like to know which ones a wrong and just need help figuring it out.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Speed Distance Time | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=EGqpLug-sDk;License: Standard YouTube License, CC-BY