
Concept explainers
(a)
The time interval during which the bicycle is ahead of the car.
(a)

Answer to Problem 38P
The time interval during which the bicycle is ahead of the car is
Explanation of Solution
Write the
Here,
Rewrite the above equation for
Use the above equation to write the expression for the time taken by the bicycle to reach its maximum speed.
Here,
It is given that the acceleration of the car is less than the acceleration of the bicycle. This implies the car cannot catch the bicycle until the time bicycle is at its maximum speed and coasting and it will be greater than the time taken by the bicycle to reach its maximum speed.
Write the equation for the total displacement of the bicycle.
Here,
It is given that the car starts from rest so that its initial velocity will be zero.
Write the equation for the displacement of the car during the time taken by the bicycle to reach the car.
Here,
When the car catches the bicycle, the two displacements will be equal.
Write the condition when the car to catches the bicycle.
Conclusion:
Substitute
Substitute
Substitute
Put equations (V) and (VI) in equation (IV).
Write the quadratic formula to solve the equation
Equation (VII) is a quadratic equation in
Since
Therefore, the time interval during which the bicycle is ahead of the car is
(b)
The maximum distance by which the bicycle leads the car.
(b)

Answer to Problem 38P
The maximum distance by which the bicycle leads the car is
Explanation of Solution
The distance by which bicycle will lead the car will increase as long as the bicycle moves faster than the car or when the speed of the car becomes equal to the maximum speed of the bicycle.
Write the equation for the elapsed time when the bicycle’s lead ceases to increase.
Here,
Write the equation for the lead of the bicycle.
Here, the subscript
Put equations (V) and (VI) in the above equation.
Conclusion:
Substitute
Substitute
Therefore, the maximum distance by which the bicycle leads the car is
Want to see more full solutions like this?
Chapter 2 Solutions
Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card)
- Two conductors having net charges of +14.0 µC and -14.0 µC have a potential difference of 14.0 V between them. (a) Determine the capacitance of the system. F (b) What is the potential difference between the two conductors if the charges on each are increased to +196.0 µC and -196.0 µC? Varrow_forwardPlease see the attached image and answer the set of questions with proof.arrow_forwardHow, Please type the whole transcript correctly using comma and periods as needed. I have uploaded the picture of a video on YouTube. Thanks,arrow_forward
- A spectra is a graph that has amplitude on the Y-axis and frequency on the X-axis. A harmonic spectra simply draws a vertical line at each frequency that a harmonic would be produced. The height of the line indicates the amplitude at which that harmonic would be produced. If the Fo of a sound is 125 Hz, please sketch a spectra (amplitude on the Y axis, frequency on the X axis) of the harmonic series up to the 4th harmonic. Include actual values on Y and X axis.arrow_forwardSketch a sign wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forwardSketch a sine wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forward
- The drawing shows two long, straight wires that are suspended from the ceiling. The mass per unit length of each wire is 0.050 kg/m. Each of the four strings suspending the wires has a length of 1.2 m. When the wires carry identical currents in opposite directions, the angle between the strings holding the two wires is 20°. (a) Draw the free-body diagram showing the forces that act on the right wire with respect to the x axis. Account for each of the strings separately. (b) What is the current in each wire? 1.2 m 20° I -20° 1.2 marrow_forwardplease solve thisarrow_forwardplease solve everything in detailarrow_forward
- 6). What is the magnitude of the potential difference across the 20-02 resistor? 10 Ω 11 V - -Imm 20 Ω 10 Ω 5.00 10 Ω a. 3.2 V b. 7.8 V C. 11 V d. 5.0 V e. 8.6 Varrow_forward2). How much energy is stored in the 50-μF capacitor when Va - V₁ = 22V? 25 µF b 25 µF 50 µFarrow_forward9). A series RC circuit has a time constant of 1.0 s. The battery has a voltage of 50 V and the maximum current just after closing the switch is 500 mA. The capacitor is initially uncharged. What is the charge on the capacitor 2.0 s after the switch is closed? R 50 V a. 0.43 C b. 0 66 C c. 0.86 C d. 0.99 C Carrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University





