Concept explainers
A particle starts from rest and accelerates as shown in Figure P2.13. Determine (a) the particle’s speed at t = 10.0 s and at t = 20.0 s, and (b) the distance traveled in the first 20.0 s.
(a)
The particle’s speed at
Answer to Problem 13P
The particle’s speed at
Explanation of Solution
Write the equation for the final velocity of a particle.
Here,
The area under acceleration versus time graph under specific time intervals gives the change in velocity of the particle during the time interval. Speed is the magnitude of velocity.
The sides of a unit rectangle in the graph are
The area under the graph in the interval
Since the particle starts from rest, its velocity at
Substitute
The area under the graph in the interval
Substitute
Conclusion:
Therefore, the particle’s speed at
(b)
The distance travelled in the first
Answer to Problem 13P
The distance travelled in the first
Explanation of Solution
The area under velocity versus time graph under specific time intervals gives the displacements during the time interval.
In part (a), it is found that the velocity at
The velocity versus time graph is shown below.
The area from
Write the equation for the area of a triangle.
Here,
In figure 1, the base of the triangle from
Substitute
Here,
The area from
Write the equation for the area of a rectangle.
Here,
In figure 1, the length of the rectangle from
Substitute
Here,
The area from
In figure 1, the base of the triangle from
Substitute
Here,
In figure 1, the length of the rectangle from
Substitute
Here,
Write the equation for total distance travelled.
Here,
Conclusion:
Substitute
Therefore, the distance travelled in the first
Want to see more full solutions like this?
Chapter 2 Solutions
Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card)
- No chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forwardCalculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forward
- How can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't knownarrow_forward2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning