PHY F/SCIENTIST MOD MASTERING 24 MO
17th Edition
ISBN: 9780137319497
Author: Knight
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 35EAP
The position of a particle is given by the function x = (2t3- 9t2+ 12) m, where t is in s. a. At what time or times is vx= 0 m/s?
b. What are the particle’s position and its acceleration at this time(s)?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
At time t = 0, a particle has a velocity of
m
v = 4.00. The following graph shows the particles
a(t)
S
acceleration vs. time.
a. What was the particle's velocity at t = 3.00s ?
2
4
t
b. What was the particle's instantaneous acceleration
time(s)
at t = 3.00s ?
С.
What was the average acceleration between t = 1.00s and t = 3.00s ?
4-
2.
acceleration(m/s)
The first astronaut has landed on Mars. Conducting some physics experiments, she drops a hammer from rest from a height of 2.01 m and uses a stopwatch to measure that the hammer takes 1.04 s to hit the ground. A. Determine the magnitude of the acceleration due to gravity on Mars. B. She then throws the hammer straight up into the Martian sky. If she comes back to her hand in 4.20 s, with what speed did she throw it?
A ball rolls down from the top of an inclined plane. The displacements for the first 3 seconds are 2.40 m, 9.84 m, and 22.00 m.
a. What is the average velocity of the ball at the end of 1s? 2s? 3s?
b. What is the average acceleration of the ball at the end of 1s? 2s? 3s?
c. What is the average of the accelerations obtained in (b)?
Chapter 2 Solutions
PHY F/SCIENTIST MOD MASTERING 24 MO
Ch. 2 - For Questions 1 through 3, interpret the position...Ch. 2 - For Questions 1 through 3, interpret the position...Ch. 2 - For Questions 1 through 3, interpret the position...Ch. 2 - FIGURE Q2.4 shows a position-versus-time graph for...Ch. 2 - FIGURE Q2.5 shows a position-versus-time graph for...Ch. 2 - FIGURE Q2.6 shows the position-versus-time graph...Ch. 2 - FIGURE Q2.7 shows the position-versus-time graph...Ch. 2 - FIGURE Q2.8 shows six frames from the motion...Ch. 2 - You’re driving along the highway at a steady speed...Ch. 2 - A bicycle is traveling east. Can its acceleration...
Ch. 2 - (a) Give an example of a vertical motion with a...Ch. 2 - A ball is thrown straight up into the air. At each...Ch. 2 - A rock is thrown (not dropped) straight do from a...Ch. 2 - FIGURE Q2.14 shows the velocity-versus-time graph...Ch. 2 - Alan leaves Los Angeles at 8:00 A.M. to drive to...Ch. 2 - Julie drives 100 mi to Grandmother’s house. On the...Ch. 2 - Larry leaves home at 9:05 and runs at constant...Ch. 2 - FIGURE EX2.4 is the position-versus-time graph of...Ch. 2 - FIGURE EX2.5 shows the position graph of a...Ch. 2 - A particle starts from x0=10matt=0s and moves with...Ch. 2 - FIGURE EX2.7 is a somewhat idealized graph of the...Ch. 2 - FIGURE EX2.8 shows the velocity graph for a...Ch. 2 - FIGURE EX2.9 shows the velocity graph of a...Ch. 2 - FIGURE EX2.7 showed the velocity graph of blood in...Ch. 2 - Prob. 11EAPCh. 2 - FIGURE EX2.1 2 shows the velocity-versus-time...Ch. 2 - a. What constant acceleration, in SI units, must a...Ch. 2 - A jet plane is cruising at 300 m/s when suddenly...Ch. 2 - a. How many days will it take a spaceship to...Ch. 2 - Prob. 16EAPCh. 2 - A speed skater moving to the left across...Ch. 2 - A Porsche challenges a Honda to a 400 m race....Ch. 2 - Acar starts from rest at a stop sign. It...Ch. 2 - Prob. 20EAPCh. 2 - A student standing on the ground throws a ball...Ch. 2 - A rock is tossed straight up from ground level...Ch. 2 - 23. When jumping, a flea accelerates at an...Ch. 2 - Prob. 24EAPCh. 2 - A rock is dropped from the top of a tall building....Ch. 2 - A skier is gliding along at 3.0 m/s on horizontal,...Ch. 2 - A car traveling at 30 m/s runs out of gas while...Ch. 2 - Prob. 28EAPCh. 2 - A snowboarder glides down a 50-m-long, 15° hill....Ch. 2 - A small child gives a plastic frog a big push at...Ch. 2 - FIGURE EX2.31 shows the acceleration-versus-time...Ch. 2 - Prob. 32EAPCh. 2 - A particle moving along the x-axis has its...Ch. 2 - A particle moving along the x-axis has its...Ch. 2 - The position of a particle is given by the...Ch. 2 - The position of a particle is given by the...Ch. 2 - Particles A. B. and C move along the x-axis....Ch. 2 - A block is suspended from a spring, pulled down,...Ch. 2 - A particle’s velocity is described by the function...Ch. 2 - Prob. 40EAPCh. 2 - Prob. 41EAPCh. 2 - A particles velocity is given by the function vx=...Ch. 2 - A ball rolls along the smooth track shown in...Ch. 2 - Draw position, velocity, and acceleration graphs...Ch. 2 - FIGURE P2.45 shows a set of kinematic graphs for a...Ch. 2 - FIGURE P2.46 shows a set of kinematic graphs for a...Ch. 2 - The takeoff speed for an Airbus A320 jetliner is...Ch. 2 - You are driving to the grocery store at 20 m/s....Ch. 2 - You’re driving down the highway late one night at...Ch. 2 - Two cars are driving at the same constant speed on...Ch. 2 - You are playing miniature golf at the golf course...Ch. 2 - The minimum stopping distance for a car traveling...Ch. 2 - A cheetah spots a Thomson’s gazelle, its preferred...Ch. 2 - You are at a train station, standing next to the...Ch. 2 - A 200 kg weather rocket is loaded with 100 kg of...Ch. 2 - A 1000 kg weather rocket is launched straight up....Ch. 2 - A lead ball is dropped into a lake from a diving...Ch. 2 - A hotel elevator ascends 200 m with a maximum...Ch. 2 - A basketball player can jump to a height of 55 cm....Ch. 2 - You are 9.0 m from the door of your bus, behind...Ch. 2 - Ann and Carol are driving their cars along the...Ch. 2 - Amir starts riding his bike up a 200-m-long slope...Ch. 2 - A very slippery block of ice slides down a smooth...Ch. 2 - Bob is driving the getaway car after the big bank...Ch. 2 - One game at the amusement park has you push a puck...Ch. 2 - A motorist is driving at 20 m/s when she sees that...Ch. 2 - Nicole throws a ball straight up. Chad watches the...Ch. 2 - David is driving a steady 30 m/s when he passes...Ch. 2 - A cat is sleeping on the floor in the middle of a...Ch. 2 - Water drops fall from the edge of a roof at a...Ch. 2 - I was driving along at 20 m/s, trying to change a...Ch. 2 - As an astronaut visiting Planet X, you’re assigned...Ch. 2 - Your goal in laboratory is to launch a ball of...Ch. 2 - When a 1984 Alfa Romeo Spider sports car...Ch. 2 - The two masses in FIGURE P2.75 slide on...Ch. 2 - In Problems 76 through 79, you are given the...Ch. 2 - In Problems 76 through 79, you are given the...Ch. 2 - In Problems 76 through 79, you are given the...Ch. 2 - In Problems 76 through 79, you are given the...Ch. 2 - A rocket is launched straight up with constant...Ch. 2 - Careful measurements have been made of Olympic...Ch. 2 - III Careful measurements have been made of Olympic...Ch. 2 - A sprinter can accelerate with constant...Ch. 2 - A rubber ball is shot straight up from the ground...Ch. 2 - The Starship Enterprise returns from warp drive to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A particles position is given by z(t) = (7.50 m/s2) t2 for t 0. a. Find an expression for the particles velocity as a function of time. b. Is the particle speeding up, slowing down, or maintaining a constant speed? c. What are the particles position, velocity, and speed at t = 6.50 min?arrow_forwardA particle starts from the origin with velocity 5im/s at t = 0 and moves in the xy plane with a varying acceleration given by a=(6tj), where a is in meters per second squared and t is in seconds. (a) Determine the velocity of the particle as a function of time. (b) Determine the position of the particle as a function of time.arrow_forwardA rocket leaves its platform with acceleration ⃗ a= ( 4.00 ^i+2.00 ^j ) m/s2 and initialvelocity v0= ( 8.00 ^i+12.0 ^j ) m/s for 5.00 seconds. After this 5.00 second interval, the rocket’sengines are turned off, and the rocket then travels as a projectile.a. Determine how long the rocket is in the air.b. What is the rocket’s velocity vector (in unit-vector notation) just before it hits theground?arrow_forward
- Given a particle that moves according to r(t) = (t2, t+,t-) t3 write the acceleration aa of the particle in the form a = aTT+aNN. at t = 0+ Select one: a. a(0) = 2T -N b. a(0) = 2N C. a(0) = 2T d. a(0) = T+N e. a(0) = Narrow_forwardA. 1.84m/s^2 B. 1.95 m/s^2 C. 8.66 m/s^2 D. Cannot be determinedarrow_forwardA particle moving along a straight line will be s centimetres from a fixedpoint at time t seconds, where t > 0 and s = 27t^3 + 16/t + 10a. Determine when the velocity will be zero.b. Is the particle accelerating? Explain.arrow_forward
- A particle moves along the x-axis. The function v(t) gives the particle's velocity at any time t> 0: Assume x to be in meters and t to be in seconds. v(t) = t5 +15t³ +20 Find: a. The velocity of the particle at t= 2s. b. The acceleration of the particle at t=2s c. Att=3, is the particle speeding up, slowing down, or neither?arrow_forwardAn object’s position as a function of time is x(t) = 9 m + 1.5 m/s t– 3 m/s^2 t^2a. Calculate the object’s position, velocity, and acceleration at t = 6.2 s. At this point in time, is the object to the left or to the right of the origin? is it moving towards the left or towards the right? is the object speeding up or slowing down?b. What is the maximum positive displacement reached?arrow_forwardfor A,B,and Carrow_forward
- The position of a particle is 7 (t) = (4ta + 6y – 2tâ) m. a. Determine its velocity and acceleration as a function of time. 히(t) = 2) m/s á(t) = 2) m/s2 b. What are its velocity and acceleration at time t = 0? 6(t = 0) = Select an answer m/s a(t = 0) = %3D Select an answer O m/s-arrow_forward3. The position of a particular particle as a function of time is given by i = (9.60t i + 8.85 j - 1.00t? k) m. Determine the particle's velocity and acceleration as a function of time. What was the average velocity of the particle in between t = 1.00 s and t = 3.00 s? What is the magnitude of the instantaneous velocity at t = 2.00 s? A A basketball is shot from an initial beight of 2 4m with an initial speed v, = 12 m/s directed atarrow_forwarda. A particle is undergoing a uniform rectilinear motion and the displacement as a function of time is given by r(t) = 6t4- 2t³ -12t²+3t+3 where r is in meters and t is in seconds. b. What is a uniform rectilinear motion? c. Find the average acceleration of the particle between t = 0 and t = 2s d. When is the acceleration zero?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY