COLLEGE PHYSICS,VOL.1
2nd Edition
ISBN: 9781111570958
Author: Giordano
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 31P
To determine
Plot position time graph for an object whose acceleration is constant and positive, constant and negative, and positive and increasing with time.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An object accelerating at constant acceleration (a) has an initial velocity v0 (at t=0), a velocity v at time t, and goes a particular distance d or x - x0 during the time interval. Derive the expression relating v0, v, a, and d (or x-x0). The relation must not include time. You may use either algebra or calculus.
The acceleration function (in m/s2) and the initial velocity are given for a particle moving along a line.Constants b and c are positive.
a(t) = bt + c, and initial velocity v(0)> 0 ; where 0 ≤ t ≤ x
(a) Find the velocity at time t.v(t) =
m/s(b) Find the distance traveled during the given time interval.distance (t) =
m
A snowboarder starts from rest at the top of a double black diamond hill. As she rides down the slope, GPS coordinates are used to determine her displacement as a function of time: x = 0.25t3 + t2 + 2t, where x and t are expressed in feet and seconds, respectively. x is measured along the surface of the hill. Determine the position, velocity, and acceleration of the boarder when t = 7.5 seconds.
The position, velocity, and acceleration of the boarder are ____ft, ____ft/s, and ____ft/s2, respectively when t = 7.5 seconds.
Chapter 2 Solutions
COLLEGE PHYSICS,VOL.1
Ch. 2.1 - Prob. 2.1CCCh. 2.2 - Prob. 2.2CCCh. 2.2 - For which of the positiontime graphs in Figure...Ch. 2.2 - Figure 2.22A shows the positiontime graph for an...Ch. 2.4 - Prob. 2.6CCCh. 2 - Prob. 1QCh. 2 - Prob. 2QCh. 2 - Prob. 3QCh. 2 - Prob. 4QCh. 2 - Prob. 5Q
Ch. 2 - Prob. 6QCh. 2 - Prob. 7QCh. 2 - Prob. 8QCh. 2 - Prob. 9QCh. 2 - Prob. 10QCh. 2 - Prob. 11QCh. 2 - Prob. 12QCh. 2 - Prob. 13QCh. 2 - Prob. 14QCh. 2 - Prob. 15QCh. 2 - Prob. 16QCh. 2 - Prob. 17QCh. 2 - Prob. 18QCh. 2 - Prob. 19QCh. 2 - Three blocks rest on a table as shown in Figure...Ch. 2 - Two football players start running at opposite...Ch. 2 - Prob. 22QCh. 2 - In SI units, velocity is measured in units of...Ch. 2 - Prob. 2PCh. 2 - Prob. 3PCh. 2 - Prob. 4PCh. 2 - Prob. 5PCh. 2 - Prob. 6PCh. 2 - Prob. 7PCh. 2 - Prob. 8PCh. 2 - Consider a marble falling through a very thick...Ch. 2 - Prob. 10PCh. 2 - Prob. 11PCh. 2 - Prob. 12PCh. 2 - Figure P2.13 shows three motion diagrams, where...Ch. 2 - Prob. 14PCh. 2 - Figure P2.15 shows several hypothetical...Ch. 2 - Prob. 16PCh. 2 - Figure P2.17 shows several hypothetical...Ch. 2 - Prob. 18PCh. 2 - Prob. 19PCh. 2 - Prob. 20PCh. 2 - Prob. 21PCh. 2 - Prob. 22PCh. 2 - Prob. 23PCh. 2 - Prob. 24PCh. 2 - For the object described by Figure P2.24, estimate...Ch. 2 - Prob. 26PCh. 2 - Prob. 27PCh. 2 - Prob. 28PCh. 2 - Prob. 29PCh. 2 - Prob. 30PCh. 2 - Prob. 31PCh. 2 - Prob. 32PCh. 2 - Prob. 33PCh. 2 - Prob. 34PCh. 2 - Prob. 35PCh. 2 - Prob. 36PCh. 2 - Prob. 37PCh. 2 - Prob. 38PCh. 2 - Prob. 39PCh. 2 - Prob. 40PCh. 2 - Prob. 41PCh. 2 - Prob. 42PCh. 2 - Prob. 43PCh. 2 - Prob. 44PCh. 2 - Prob. 45PCh. 2 - Prob. 46PCh. 2 - Prob. 47PCh. 2 - Prob. 48PCh. 2 - Prob. 49PCh. 2 - Prob. 50PCh. 2 - Prob. 51PCh. 2 - Prob. 52PCh. 2 - Prob. 53PCh. 2 - Prob. 54PCh. 2 - Prob. 55PCh. 2 - Prob. 56PCh. 2 - Prob. 57PCh. 2 - Prob. 58PCh. 2 - Prob. 59PCh. 2 - Prob. 60P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A particle moving in 1D has time-dependent velocity which is given by the quadratic function v(t) = At2 + Bt + C, where A = 4.5 m/s3, B = 3.6 m/s2, and C = −1.7 m/s. a) Find the average acceleration of the particle between t = 0 s and 2.5 s. b) Find the average acceleration of the particle between t = 2.5 s and 5.0 s. c) At what time(s) is the particle at rest?arrow_forwardAn object's position in the x-direction as a function of time is given by the expression; x(t) = 5t2 + 2t where are quantities have proper SI Units. What is the object's average velocity in the x-direction between the times t = 1.3 s and t = 2.28 s.arrow_forwardAn object starts from rest and accelerates uniformly in a straight line in the positive x direction. After 13.6 seconds, it’s speed is 64.0m/s. What is the average velocity (in m/s) of the object during the first 13.6 seconds.arrow_forward
- An object’s velocity is measured to be vx1t2 = a - bt2, where a = 4.00 m/s and b = 2.00 m/s3. At t = 0 the object is at x = 0. (a) Calculate the object’s position and acceleration as functions of time. (b) What is the object’s maximum positive displacement from the origin?arrow_forwardPart a and barrow_forwardAt an air show, a jet plane has velocity components vx= 695km/h and v y =415km/h at time 4.35 s and v x =938km/h and V y =365km/h at time 7.52s. A)For this time interval, find the xxx component of the plane's average acceleration. b)For this time interval, find the yyy component of the plane's average acceleration. C)For this time interval, find the magnitude of its average acceleration. D)For this time interval, find the direction of its average acceleration.arrow_forward
- A snowboarder starts from rest at the top of a double black diamond hill. As she rides down the slope, GPS coordinates are used to determine her displacement as a function of time: x = 0.5t3 + t2 + 2t, where x and t are expressed in meter and seconds, respectively. Determine the acceleration (m/s²) when t=5 seconds.arrow_forwardThe acceleration of a particle is given by a = 2t - 15, where a is in meters per second squared and t is in seconds. Determine the velocity and displacement as functions of time. The initial displacement at t = 0 is 5o = -6 m, and the initial velocity is vo= 5 m/s. Once you have determined the functions of time, answer the questions. Questions: When t = 4.9 s, S= i V= a= i i m m/s m/s²arrow_forwardA snowboarder starts from rest at the top of a double black diamond hill. As she rides down the slope, GPS coordinates are used to determine her displacement as a function of time given: x = 0.5t^3 + t^2 + 2t, where x and t are expressed in feet and seconds, respectively. Determine the displacement, average velocity, average speed and average acceleration for the time period from t=2 seconds to t=7 seconds.arrow_forward
- Chapter 2- questn-17 The coordinate of an object is given as a function of time by x(t) = 4t2 – 3t³, where x is in meters and t is in second. What is the average acceleration of the object over the time interval from t=0 to t=2 s ? Option 1 Option 2 Option 3 Option 4 Option 5 -10 10 -4 4 -18arrow_forwardAn object is moving along the x-axis. At t = 0 it has velocity v0x = 20.0 m/s. Starting at time t = 0 it has acceleration ax = -Ct, where C has units of m/s3. (a) What is the value of C if the object stops in 8.00 s after t = 0? (b) For the value of C calculated in part (a), how far does the object travel during the 8.00 s?arrow_forwardA train accelerates uniformly from rest at station A to a maximum speed of 72 km/h. The constant maximum speed is maintained for a period of time and the train then decelerates uniformly until it comes to a stop at station B. The distance between the two railway stations is 22 km and the journey takes 20 minutes. If the magnitude of the acceleration is half that of deceleration, by using the graphical method, determine the acceleration, in meters per second per second, and the time, in minutes, during which the train travels at its maximum speed.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY