COLLEGE PHYSICS,VOL.1
COLLEGE PHYSICS,VOL.1
2nd Edition
ISBN: 9781111570958
Author: Giordano
Publisher: CENGAGE L
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 2, Problem 53P

(a)

To determine

The average velocity over the time interval t=0.0s to t=10.0s.

(a)

Expert Solution
Check Mark

Answer to Problem 53P

The average velocity over the time interval t=0.0s to t=10.0s, is 3.0m/s_.

Explanation of Solution

Write the expression for average velocity.

  vavg=ΔxΔt        (I)

Conclusion:

Substitute, 30m0m for Δx, and 10.0s0.0s for Δt in equation (I) to find the average velocity from t=0.0s to t=10.0s.

  vavg=30m0m10.0s0s=3.0m/s

Therefore, the average velocity over the time interval t=0.0s to t=10.0s, is 3.0m/s_.

(b)

To determine

The average velocity over the time interval t=0.0s to t=5.0s.

(b)

Expert Solution
Check Mark

Answer to Problem 53P

The average velocity over the time interval t=0.0s to t=5.0s is 4.5m/s_.

Explanation of Solution

Use equation (I) to find the answer.

Conclusion:

Substitute, 22.5m0m for Δx, and 5.0s0.0s for Δt in equation (I) to find the average velocity from t=0.0s to t=5.0s.

  vavg=22.5m0m5.0s0s=4.5m/s

Therefore, the average velocity over the time interval t=0.0s to t=5.0s is 4.5m/s_.

(c)

To determine

The average velocity between t=5.0s and t=10.0s.

(c)

Expert Solution
Check Mark

Answer to Problem 53P

The average velocity between t=5.0s and t=10.0s is 1.5m/s_.

Explanation of Solution

Use equation (I) to find the answer.

Conclusion:

Substitute, 30m22.5m for Δx, and 10.0s5.0s for Δt in equation (I) to find the average velocity from t=5.0s to t=10.0s.

  vavg=30m22.5m10.0s5.0s=1.5m/s

Therefore, the average velocity between t=5.0s and t=10.0s is 1.5m/s_.

(d)

To determine

The relation of answers in part (a), (b), and (c).

(d)

Expert Solution
Check Mark

Answer to Problem 53P

The relation is average of answers in part (b), and (c) is answer in part (a).

Explanation of Solution

The total average velocity over the time interval t=0.0s to t=10.0s must be equal to the average of the individual average velocities for the time intervals t=0.0s to t=5.0s and t=5.0s to t=10.0s.

Write the expression for the average velocity.

  vavg,a=vavg,b+vavg,c2        (II)

Conclusion:

Substitute, 4.5m/s for vavg,b, 1.5m/s for vavg,c in equation (II).

  vavg,a=4.5m/s+1.5m/s2=3.0m/s

Therefore, the relation is average of answers in part (b), and (c) is answer in part (a).

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A Jamin interferometer is a device for measuring or for comparing the indices of refraction of gases. A beam of monochromatic light is split into two parts, each of which is directed along the axis of a separate cylindrical tube before being recombined into a single beam that is viewed through a telescope. Suppose we are given the following, • Length of each tube is L = 0.4 m. • λ= 598 nm. Both tubes are initially evacuated, and constructive interference is observed in the center of the field of view. As air is slowly let into one of the tubes, the central field of view changes dark and back to bright a total of 198 times. (a) What is the index of refraction for air? (b) If the fringes can be counted to ±0.25 fringe, where one fringe is equivalent to one complete cycle of intensity variation at the center of the field of view, to what accuracy can the index of refraction of air be determined by this experiment?
1. An arrangement of three charges is shown below where q₁ = 1.6 × 10-19 C, q2 = -1.6×10-19 C, and q3 3.2 x 10-19 C. 2 cm Y 93 92 91 X 3 cm (a) Calculate the magnitude and direction of the net force on q₁. (b) Sketch the direction of the forces on qi
(Figure 1)In each case let w be the weight of the suspended crate full of priceless art objects. The strut is uniform and also has weight w  Find the direction of the force exerted on the strut by the pivot in the arrangement (a). Express your answer in degrees. Find the tension Tb in the cable in the arrangement (b). Express your answer in terms of w. Find the magnitude of the force exerted on the strut by the pivot in the arrangement (b). Express your answer in terms of w.

Chapter 2 Solutions

COLLEGE PHYSICS,VOL.1

Ch. 2 - Prob. 6QCh. 2 - Prob. 7QCh. 2 - Prob. 8QCh. 2 - Prob. 9QCh. 2 - Prob. 10QCh. 2 - Prob. 11QCh. 2 - Prob. 12QCh. 2 - Prob. 13QCh. 2 - Prob. 14QCh. 2 - Prob. 15QCh. 2 - Prob. 16QCh. 2 - Prob. 17QCh. 2 - Prob. 18QCh. 2 - Prob. 19QCh. 2 - Three blocks rest on a table as shown in Figure...Ch. 2 - Two football players start running at opposite...Ch. 2 - Prob. 22QCh. 2 - In SI units, velocity is measured in units of...Ch. 2 - Prob. 2PCh. 2 - Prob. 3PCh. 2 - Prob. 4PCh. 2 - Prob. 5PCh. 2 - Prob. 6PCh. 2 - Prob. 7PCh. 2 - Prob. 8PCh. 2 - Consider a marble falling through a very thick...Ch. 2 - Prob. 10PCh. 2 - Prob. 11PCh. 2 - Prob. 12PCh. 2 - Figure P2.13 shows three motion diagrams, where...Ch. 2 - Prob. 14PCh. 2 - Figure P2.15 shows several hypothetical...Ch. 2 - Prob. 16PCh. 2 - Figure P2.17 shows several hypothetical...Ch. 2 - Prob. 18PCh. 2 - Prob. 19PCh. 2 - Prob. 20PCh. 2 - Prob. 21PCh. 2 - Prob. 22PCh. 2 - Prob. 23PCh. 2 - Prob. 24PCh. 2 - For the object described by Figure P2.24, estimate...Ch. 2 - Prob. 26PCh. 2 - Prob. 27PCh. 2 - Prob. 28PCh. 2 - Prob. 29PCh. 2 - Prob. 30PCh. 2 - Prob. 31PCh. 2 - Prob. 32PCh. 2 - Prob. 33PCh. 2 - Prob. 34PCh. 2 - Prob. 35PCh. 2 - Prob. 36PCh. 2 - Prob. 37PCh. 2 - Prob. 38PCh. 2 - Prob. 39PCh. 2 - Prob. 40PCh. 2 - Prob. 41PCh. 2 - Prob. 42PCh. 2 - Prob. 43PCh. 2 - Prob. 44PCh. 2 - Prob. 45PCh. 2 - Prob. 46PCh. 2 - Prob. 47PCh. 2 - Prob. 48PCh. 2 - Prob. 49PCh. 2 - Prob. 50PCh. 2 - Prob. 51PCh. 2 - Prob. 52PCh. 2 - Prob. 53PCh. 2 - Prob. 54PCh. 2 - Prob. 55PCh. 2 - Prob. 56PCh. 2 - Prob. 57PCh. 2 - Prob. 58PCh. 2 - Prob. 59PCh. 2 - Prob. 60P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY