Atkins' Physical Chemistry
Atkins' Physical Chemistry
11th Edition
ISBN: 9780198769866
Author: ATKINS, P. W. (peter William), De Paula, Julio, Keeler, JAMES
Publisher: Oxford University Press
bartleby

Concept explainers

Question
Book Icon
Chapter 2, Problem 2D.5P
Interpretation Introduction

Interpretation: The values of the isothermal compressibility and the expansion coefficient of a van der Waals gas have to be calculated.  Also, it has to be shown that κTR=α(Vmb) with the help of Euler’s chain relation.

Concept introduction: The van der Waals equation defined the behavior of real gases.  This includes the forces of attraction and repulsion in the real gases.  This is represented by the formula given below as,

    p=nRTVnbn2aV2

Expert Solution & Answer
Check Mark

Answer to Problem 2D.5P

The expansion coefficient of a van der Waals gas is,

    α=RPVmaVm+2abVm2

The isothermal compressibility of a van der Waals gas is,

    κT=(Vmb)pVmaVm+2abVm2

It is proved that κTR=α(Vmb).

Explanation of Solution

The expression for one mole of a van der Waals gas is,

    (p+aVm2)(Vmb)=RT                                                                                 (1)

The above expression is also written as,

    pVm+aVmpbabVm2=RTpVm3+aVmpVm2bab=Vm2RT

Differentiate the above equation as follows,

    Vm3dp+3Vm2pdVm+adVmVm2bdp2pVmbdVm=2VmRTdVm+Vm2RdT        (2)

At constant pressure, dp=0.  Divide the above equation by dT, it is simplified as,

    3Vm2p(VmT)p+a(VmT)p2pVmb(VmT)p=2VmRT(VmT)p+Vm2R(VmT)p=Vm2R3Vm2p+a2pVmb2VmRT (3)

Now, the value of the expansion coefficient of a van der Waals gas is,

    α=1V(VT)p                                                                                                 (4)

Substitute the value of (VmT)p from equation (3) to equation (4).

    α=R3Vmp+aVm2pb2RT

As, it is known that (p+aVm2)(Vmb)=RT.  Therefore, the above expression becomes,

    α=R3Vmp+aVm2pb2(p+aVm2)(Vmb)=R3Vmp+aVm2pb2PVm+2pb2aVmVm2+2abVm2=RPVmaVm+2abVm2

Hence, the expansion coefficient of a van der Waals gas is,

    α=RPVmaVm+2abVm2

Now, At constant temperature, dT=0.  Divide the above equation (2) by dp, it is simplified as,

    Vm3+3Vm2p(Vmp)T+a(Vmp)TVm2b(Vmp)T2pVmb(Vmp)T=2VmRT(Vmp)T

The above expression is simplified as,

    (Vmp)T=Vm2bVm33Vm2p+a2pVmb2VmRT=Vm(bVm)3Vm2p+a2pVmb2VmRT

As, it is known that (p+aVm2)(Vmb)=RT.  Therefore, the above expression becomes,

    (Vmp)T=Vm(bVm)3Vm2p+a2pVmb2Vm(p+aVm2)(Vmb)=Vm(bVm)3Vm2p+a2pVmb2Vm(p+aVm2)(Vmb)=Vm(bVm)pVmaVm+2abVm2                                 (5)

Now, the value of isothermal compressibility is given by the expression,

    κT=1Vm(Vmp)T                                                                                          (6)

Substitute the value of (Vmp)T from equation (5) to equation (6).

    κT=1Vm×Vm(bVm)pVmaVm+2abVm2=(Vmb)pVmaVm+2abVm2

Hence, the isothermal compressibility of a van der Waals gas is,

    κT=(Vmb)pVmaVm+2abVm2

According to Euler’s chain relation, the partial derivates are expressed as,

    (Vmp)T(TVm)p(pT)Vm=1                                                                      (7)

Since, (Vmp)T=κTVm                                                                                          (8)

And, (TVm)p=1αVm                                                                                                (9)

Substitute the values of (Vmp)T and (TVm)p from equations (8) and (9) to equation (7).

    κTVm×1αVm(pT)Vm=1κT(pT)Vm=α                                                                          (10)

At constant volume, dV=0.  Divide the above equation (2) by dT, it is simplified as,

    Vm3(pT)VmVm2b(pT)Vm=Vm2R(pT)Vm=RVmb                                                              (11)

Now, substitute the value of (pT)Vm from equation (11) to equation (10).

    κT×RVmb=ακTR=α(Vmb)

Hence, it is proved that κTR=α(Vmb).

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
LTS Solid: AT=Te-Ti Trial 1 Trial 2 Trial 3 Average ΔΗ Mass water, g 24.096 23.976 23.975 Moles of solid, mol 0.01763 001767 0101781 Temp. change, °C 2.9°C 11700 2.0°C Heat of reaction, J -292.37J -170.473 -193.26J AH, kJ/mole 16.58K 9.647 kJ 10.85 kr 16.58K59.64701 KJ mol 12.35k Minimum AS, J/mol K 41.582 mol-k Remember: q = mCsAT (m = mass of water, Cs=4.184J/g°C) & qsin =-qrxn & Show your calculations for: AH in J and then in kJ/mole for Trial 1: qa (24.0969)(4.1845/g) (-2.9°C)=-292.37J qsin = qrxn = 292.35 292.37J AH in J = 292.375 0.2923kJ 0.01763m01 =1.65×107 AH in kJ/mol = = 16.58K 0.01763mol mol qrx Minimum AS in J/mol K (Hint: use the average initial temperature of the three trials, con Kelvin.) AS=AHIT (1.65×10(9.64×103) + (1.0 Jimai
For the compound: C8H17NO2 Use the following information to come up with a plausible structure: 8 This compound has "carboxylic acid amide" and ether functional groups. The peaks at 1.2ppm are two signals that are overlapping one another. One of the two signals is a doublet that represents 6 hydrogens; the other signal is a quartet that represents 3 hydrogens.
Vnk the elements or compounds in the table below in decreasing order of their boiling points. That is, choose 1 next to the substance with the highest bolling point, choose 2 next to the substance with the next highest boiling point, and so on. substance C D chemical symbol, chemical formula or Lewis structure. CH,-N-CH, CH, H H 10: H C-C-H H H H Cale H 10: H-C-C-N-CH, Bri CH, boiling point (C) Сен (C) B (Choose

Chapter 2 Solutions

Atkins' Physical Chemistry

Ch. 2 - Prob. 2A.4DQCh. 2 - Prob. 2A.5DQCh. 2 - Prob. 2A.1AECh. 2 - Prob. 2A.1BECh. 2 - Prob. 2A.2AECh. 2 - Prob. 2A.2BECh. 2 - Prob. 2A.3AECh. 2 - Prob. 2A.3BECh. 2 - Prob. 2A.4AECh. 2 - Prob. 2A.4BECh. 2 - Prob. 2A.5AECh. 2 - Prob. 2A.5BECh. 2 - Prob. 2A.6AECh. 2 - Prob. 2A.6BECh. 2 - Prob. 2A.1PCh. 2 - Prob. 2A.2PCh. 2 - Prob. 2A.3PCh. 2 - Prob. 2A.4PCh. 2 - Prob. 2A.5PCh. 2 - Prob. 2A.6PCh. 2 - Prob. 2A.7PCh. 2 - Prob. 2A.8PCh. 2 - Prob. 2A.9PCh. 2 - Prob. 2A.10PCh. 2 - Prob. 2B.1DQCh. 2 - Prob. 2B.2DQCh. 2 - Prob. 2B.1AECh. 2 - Prob. 2B.1BECh. 2 - Prob. 2B.2AECh. 2 - Prob. 2B.2BECh. 2 - Prob. 2B.3AECh. 2 - Prob. 2B.3BECh. 2 - Prob. 2B.4AECh. 2 - Prob. 2B.4BECh. 2 - Prob. 2B.1PCh. 2 - Prob. 2B.2PCh. 2 - Prob. 2B.3PCh. 2 - Prob. 2B.4PCh. 2 - Prob. 2B.5PCh. 2 - Prob. 2C.1DQCh. 2 - Prob. 2C.2DQCh. 2 - Prob. 2C.3DQCh. 2 - Prob. 2C.4DQCh. 2 - Prob. 2C.1AECh. 2 - Prob. 2C.1BECh. 2 - Prob. 2C.2AECh. 2 - Prob. 2C.2BECh. 2 - Prob. 2C.3AECh. 2 - Prob. 2C.3BECh. 2 - Prob. 2C.4AECh. 2 - Prob. 2C.4BECh. 2 - Prob. 2C.5AECh. 2 - Prob. 2C.5BECh. 2 - Prob. 2C.6AECh. 2 - Prob. 2C.6BECh. 2 - Prob. 2C.7AECh. 2 - Prob. 2C.7BECh. 2 - Prob. 2C.8AECh. 2 - Prob. 2C.8BECh. 2 - Prob. 2C.1PCh. 2 - Prob. 2C.2PCh. 2 - Prob. 2C.3PCh. 2 - Prob. 2C.4PCh. 2 - Prob. 2C.5PCh. 2 - Prob. 2C.6PCh. 2 - Prob. 2C.7PCh. 2 - Prob. 2C.8PCh. 2 - Prob. 2C.9PCh. 2 - Prob. 2C.10PCh. 2 - Prob. 2C.11PCh. 2 - Prob. 2D.1DQCh. 2 - Prob. 2D.2DQCh. 2 - Prob. 2D.1AECh. 2 - Prob. 2D.1BECh. 2 - Prob. 2D.2AECh. 2 - Prob. 2D.2BECh. 2 - Prob. 2D.3AECh. 2 - Prob. 2D.3BECh. 2 - Prob. 2D.4AECh. 2 - Prob. 2D.4BECh. 2 - Prob. 2D.5AECh. 2 - Prob. 2D.5BECh. 2 - Prob. 2D.1PCh. 2 - Prob. 2D.2PCh. 2 - Prob. 2D.3PCh. 2 - Prob. 2D.4PCh. 2 - Prob. 2D.5PCh. 2 - Prob. 2D.6PCh. 2 - Prob. 2D.7PCh. 2 - Prob. 2D.8PCh. 2 - Prob. 2D.9PCh. 2 - Prob. 2E.1DQCh. 2 - Prob. 2E.2DQCh. 2 - Prob. 2E.1AECh. 2 - Prob. 2E.1BECh. 2 - Prob. 2E.2AECh. 2 - Prob. 2E.2BECh. 2 - Prob. 2E.3AECh. 2 - Prob. 2E.3BECh. 2 - Prob. 2E.4AECh. 2 - Prob. 2E.4BECh. 2 - Prob. 2E.5AECh. 2 - Prob. 2E.5BECh. 2 - Prob. 2E.1PCh. 2 - Prob. 2E.2PCh. 2 - Prob. 2.1IACh. 2 - Prob. 2.3IACh. 2 - Prob. 2.4IACh. 2 - Prob. 2.5IACh. 2 - Prob. 2.6IACh. 2 - Prob. 2.7IA
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY