Catching the Bus. A student is running at her top speed of 5.0 m/s to catch a bus, which is stopped at the bus stop. When the student is still 40.0 m from the bus, it starts to pull away, moving with a constant acceleration of 0.170 m/s 2 . (a) For how much lime and what distance does the student have to run at 5.0 m/s before she overtakes the bus? (b) When she roaches the bus, how fast is the bus traveling? (c) Sketch an x-t graph for both the student and the bus. Take x = 0 at the initial position of the student, (d) The equations you used in part (a) to find the time have a second solution, corresponding to a later time for which the student and bus are again at the same place if they continue their specified motions. Explain the significance of this second solution. How fast is the bus traveling at this point? (e) If the student’s top speed is 3.5 m/s. will she catch the bus? (f) What is the minimum speed the student must have to just catch up with the bus? For what time and w hat distance does she have to run in that case?
Catching the Bus. A student is running at her top speed of 5.0 m/s to catch a bus, which is stopped at the bus stop. When the student is still 40.0 m from the bus, it starts to pull away, moving with a constant acceleration of 0.170 m/s 2 . (a) For how much lime and what distance does the student have to run at 5.0 m/s before she overtakes the bus? (b) When she roaches the bus, how fast is the bus traveling? (c) Sketch an x-t graph for both the student and the bus. Take x = 0 at the initial position of the student, (d) The equations you used in part (a) to find the time have a second solution, corresponding to a later time for which the student and bus are again at the same place if they continue their specified motions. Explain the significance of this second solution. How fast is the bus traveling at this point? (e) If the student’s top speed is 3.5 m/s. will she catch the bus? (f) What is the minimum speed the student must have to just catch up with the bus? For what time and w hat distance does she have to run in that case?
Catching the Bus. A student is running at her top speed of 5.0 m/s to catch a bus, which is stopped at the bus stop. When the student is still 40.0 m from the bus, it starts to pull away, moving with a constant acceleration of 0.170 m/s2. (a) For how much lime and what distance does the student have to run at 5.0 m/s before she overtakes the bus? (b) When she roaches the bus, how fast is the bus traveling? (c) Sketch an x-t graph for both the student and the bus. Take x = 0 at the initial position of the student, (d) The equations you used in part (a) to find the time have a second solution, corresponding to a later time for which the student and bus are again at the same place if they continue their specified motions. Explain the significance of this second solution. How fast is the bus traveling at this point? (e) If the student’s top speed is 3.5 m/s. will she catch the bus? (f) What is the minimum speed the student must have to just catch up with the bus? For what time and w hat distance does she have to run in that case?
Car A starts from rest at t = 0 and travels along a straight road with a constant acceleration of 6 ft/s^2 until it reaches a speed of 60ft/s. Afterwards it maintains the speed. Also, when t = 0, car B located 6000 ft down the road is traveling towards A at a constant speed of 80 ft/s. Determine the distance traveled by Car A when they pass each other.Write the solution using pen and draw the graph if needed.
In the given circuit the charge on the plates of 1 μF capacitor, when 100 V battery is connected to the terminals
A and B, will be
2 μF
A
1 µF
B
3 µF
The velocity of a particle moves along the x-axis and is given by the equation ds/dt = 40 - 3t^2 m/s. Calculate the acceleration at time t=2 s and t=4 s. Calculate also the total displacement at the given interval. Assume at t=0 s=5m.Write the solution using pen and draw the graph if needed.
Chapter 2 Solutions
University Physics with Modern Physics, Volume 1 (Chs. 1-20) and Mastering Physics with Pearson eText & ValuePack Access Card (14th Edition)
Human Physiology: An Integrated Approach (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.