University Physics with Modern Physics, Volume 1 (Chs. 1-20) and Mastering Physics with Pearson eText & ValuePack Access Card (14th Edition)
14th Edition
ISBN: 9780134209586
Author: Hugh D. Young
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 2.74P
A flowerpot falls off a windowsill and passes the window of the story below. Ignore air resistance. It takes the pot 0.380 s to pass from the top to the bottom of this window, which is 1.90 m high. How far is the top of the window below the window-sill from which the flowerpot fell?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A little youngster pulls a toy block up a steep hill before releasing it at the top. He believes the block will fall in his room, but his sister believes he is attempting to fire it into her room across the corridor. Mom isn't going to be pleased if she goes down the hall and steps on the block. Assume the incline's upper end is 1.00 m (horizontally) from the boy's door, and the hallway is 1.00 m wide. Who is correct? This issue, as a whole, does not fit any of the problem types you've learnt; nevertheless, it may be divided into three individual problems. The steps below will walk you through them. There is just one evaluation required. (a) A kid pulls a 0.750 kg wooden block up an incline with an 8.43 N force that is parallel to the slope (rather than horizontal, which is more difficult). The inclination is at an angle, and the kinetic friction coefficient between the block and the incline is 0.178. Determine the acceleration of a block with a 28.0° angle and a length of 0.463 m. (c)…
In the winter sport of bobsledding, athletes push their sled along a horizontal ice surface and then hop on the sled as it starts to careen down the steeply sloped track. In one event, the sled reaches a top speed of 9.2 m/sm/s before starting down the initial part of the track, which is sloped downward at an angle of 5.0 degrees. What is the sled's speed after it has traveled the first 140 m?
A stone is thrown from the top of a 59.4 m high rock. The vertical component of the initial speed of the stone is 19.5 m / s upwards. How long does the stone spend in the air? Suppose the soil at the base of the rock is flat.
Chapter 2 Solutions
University Physics with Modern Physics, Volume 1 (Chs. 1-20) and Mastering Physics with Pearson eText & ValuePack Access Card (14th Edition)
Ch. 2.1 - Each of the following five trips takes one hour....Ch. 2.2 - TEST YOUR UNDERSTANDING OF SECTION 2.2 Figure 2.9...Ch. 2.3 - Look again at the x-t graph in Fig. 2.9 at the end...Ch. 2.4 - Four possible vx-t graphs are shown for the two...Ch. 2.5 - If you toss a ball upward with a certain initial...Ch. 2 - Does the speedometer of a car measure speed or...Ch. 2 - The black dots at the top of Fig. Q2.2 represent a...Ch. 2 - Can an object with constant acceleration reverse...Ch. 2 - Under what conditions is average velocity equal to...Ch. 2 - Is it possible for an object to be (a) slowing...
Ch. 2 - Under what conditions does the magnitude of the...Ch. 2 - When a Dodge Viper is at Elwoods Car Wash, a BMW...Ch. 2 - A driver in Massachusetts was sent to traffic...Ch. 2 - Can you have zero displacement and nonzero average...Ch. 2 - Can you have zero acceleration and nonzero...Ch. 2 - Can you have zero velocity and nonzero average...Ch. 2 - An automobile is traveling west. Can it have a...Ch. 2 - The officials truck in Fig. 2.2 is at x1 = 277 m...Ch. 2 - Under constant acceleration the average velocity...Ch. 2 - You throw a baseball straight up in the air so...Ch. 2 - Prove these statements: (a) As long as you can...Ch. 2 - A dripping water faucet steadily releases drops...Ch. 2 - If you know the initial position and initial...Ch. 2 - From the top of a tall building, you throw one...Ch. 2 - You run due cast at a constant speed of 3.00 m/s...Ch. 2 - An object is thrown straight up into the air and...Ch. 2 - When you drop an object from a certain height, it...Ch. 2 - A car travels in the +x-direction on a straight...Ch. 2 - In an experiment, a shearwater (a seabird) was...Ch. 2 - Trip Home. You normally drive on the freeway...Ch. 2 - From Pillar to Post. Starting from a pillar, you...Ch. 2 - Starting from the front door of a ranch house, you...Ch. 2 - A Honda Civic travels in a straight line along a...Ch. 2 - CALC A car is stopped at a traffic light. It then...Ch. 2 - CALC A bird is flying due east. Its distance from...Ch. 2 - A ball moves in a straight line (the x-axis). The...Ch. 2 - A physics professor leaves her house and walks...Ch. 2 - A test car travels in a straight line along the...Ch. 2 - Figure E2.12 shows the velocity of a solar-powered...Ch. 2 - The Fastest (and Most Expensive) Car! The table...Ch. 2 - CALC A race car starts from rest and travels east...Ch. 2 - CALC A turtle crawls along a straight line, which...Ch. 2 - An astronaut has left the International Space...Ch. 2 - CALC A cars velocity as a function of time is...Ch. 2 - CALC The position of the front bumper of a test...Ch. 2 - An antelope moving with constant acceleration...Ch. 2 - BIO Blackout? A jet fighter pilot wishes to...Ch. 2 - A Fast Pitch. The fastest measured pitched...Ch. 2 - A Tennis Serve. In the fastest measured tennis...Ch. 2 - BIO Automobile Air Bags. The human body can...Ch. 2 - BIO A pilot who accelerates at more than 4g begins...Ch. 2 - BIO Air-Bag Injuries. During an auto accident, the...Ch. 2 - BIO Prevention of Hip Fractures. Falls resulting...Ch. 2 - BIO Are We Martians? It has been suggested, and...Ch. 2 - Entering the Freeway. A car sits on an entrance...Ch. 2 - At launch a rocket ship weighs 4.5 million pounds....Ch. 2 - A cat walks in a straight line, which we shall...Ch. 2 - The graph in Fig. E2.31 shows the velocity of a...Ch. 2 - Two cars, A and B, move along the x-axis. Figure...Ch. 2 - A small block has constant acceleration as it...Ch. 2 - At the instant the traffic light turns green, a...Ch. 2 - (a) If a flea can jump straight up to a height of...Ch. 2 - A small rock is thrown vertically upward with a...Ch. 2 - A juggler throws a bowling pin straight up with an...Ch. 2 - You throw a glob of putty straight up toward the...Ch. 2 - A tennis ball on Mars, where the acceleration due...Ch. 2 - Touchdown on the Moon. A lunar lander is making...Ch. 2 - A Simple Reaction-Time Test. A meter stick is held...Ch. 2 - A brick is dropped (zero initial speed) from the...Ch. 2 - Launch Failure. A 7500-kg rocket blasts off...Ch. 2 - A hot-air balloonist, rising vertically with a...Ch. 2 - BIO The rocket-driven sled Sonic Wind No. 2, used...Ch. 2 - An egg is thrown nearly vertically upward from a...Ch. 2 - A 15-kg rock is dropped from rest on the earth and...Ch. 2 - A large boulder is ejected vertically upward from...Ch. 2 - You throw a small rock straight up front the edge...Ch. 2 - CALC A small object moves along the x-axis with...Ch. 2 - CALC A rocket starts from rest and moves upward...Ch. 2 - CALC The acceleration of a bus is given by ax(t) =...Ch. 2 - CALC The acceleration of a motorcycle is given by...Ch. 2 - BIO Flying Leap of the Flea. High-speed motion...Ch. 2 - BIO A typical male sprinter can maintain his...Ch. 2 - CALC A lunar lander is descending toward the moons...Ch. 2 - Earthquake Analysis. Earthquakes produce several...Ch. 2 - A brick is dropped from the roof of a tall...Ch. 2 - A rocket carrying a satellite is accelerating...Ch. 2 - A subway train starts from rest at a station and...Ch. 2 - A gazelle is running in a straight line (the...Ch. 2 - Collision. The engineer of a passenger train...Ch. 2 - A ball starts from rest and rolls down a hill with...Ch. 2 - Two cars start 200 m apart and drive toward each...Ch. 2 - A car and a truck start from rest at the same...Ch. 2 - You are standing at rest at a bus stop. A bus...Ch. 2 - Passing. The driver of a car wishes to pass a...Ch. 2 - CALC An objects velocity is measured to be vx(t) =...Ch. 2 - CALC The acceleration of a particle is given by...Ch. 2 - Egg Drop. You are on the roof of the physics...Ch. 2 - A certain volcano on earth can eject rocks...Ch. 2 - An entertainer juggles balls while doing other...Ch. 2 - Look Out Below. Sam heaves a 16-lb shot straight...Ch. 2 - A flowerpot falls off a windowsill and passes the...Ch. 2 - Two stones are thrown vertically upward from the...Ch. 2 - A Multistage Rocket. In the first stage of a...Ch. 2 - During your summer internship for an aerospace...Ch. 2 - A physics teacher performing an outdoor...Ch. 2 - A helicopter carrying Dr. Evil takes off with a...Ch. 2 - Cliff Height. You are climbing in the High Sierra...Ch. 2 - CALC An object is moving along the x-axis. At t =...Ch. 2 - A ball is thrown straight up from the ground with...Ch. 2 - CALC Cars A and B travel in a straight line. The...Ch. 2 - DATA In your physics lab you release a small...Ch. 2 - DATA In a physics lab experiment, you release a...Ch. 2 - DATA A model car starts from rest and travels in a...Ch. 2 - In the vertical jump, an athlete starts from a...Ch. 2 - Catching the Bus. A student is running at her top...Ch. 2 - A ball is thrown straight up from the edge of the...Ch. 2 - BIO BLOOD FLOW IN THE HEART. The human circulatory...Ch. 2 - BIO BLOOD FLOW IN THE HEART. The human circulatory...Ch. 2 - BIO BLOOD FLOW IN THE HEART. The human circulatory...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The magnitude and direction of airplane’s acceleration.
Physics (5th Edition)
What class of motion, natural or violent, did Aristotle attribute to motion of the Moon?
Conceptual Physics (12th Edition)
The decreased chemical energy of the battery when it moves a 2000 C of charge around the circuit.
College Physics: A Strategic Approach (3rd Edition)
Calculate the moment of inertia of a skater given the following information. (a) The 60.0-kg skater is approxim...
University Physics Volume 1
Two different electrical devices have the same power consumption, but one is meant to be operated on 12G-V AC a...
College Physics
Energy in Thermal Physics Estimate the number of air molecules in an average-sized room.
An Introduction to Thermal Physics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A bridge that was 11.2 m long has been washed out by the rain several days ago. How fast must a car be going to successfully jump the stream? Although the road is level on both sides of the bridge, the road on the far side is 2.1 m lower than the road on this side.arrow_forwardA motorcyclist’s stunt requires him to cross a ravine. He starts from a ramp on the left which is inclined at an angle of 45 degrees. His motorcycle is going at 30m/s when he leaves the ramp. He makes it just across and lands on the opposite side of the ravine on a ramp that has a height 4 meters below the first. How wide is the ravine?arrow_forwardA skier leaves the top of a slope with an initial speed of 5.0 m/s. Her speed at the bottom of the slope is 13 m/s. What is the height of the slope?arrow_forward
- A car is traveling horizontally at 28.7 m/s at the moment it drives off the top of a cliff. The car strikes the ground 0.538 seconds after leaving the top of the cliff. Assuming air-resistance can be ignored, how tall is the cliff?arrow_forwardTo celebrate her good performance on a physics test, Alice decides to break out a bottle of champagne. In order to avoid property damage, she takes the bottle outside to uncork it. The cork pops off the champagne bottle with a velocity of 12.0 m/s at an angle of 15° relative to the vertical. When the cork is released, Alice is holding the bottle such that the cork is 1.80 m above the ground. How far does Alice have to walk to retrieve the cork?arrow_forwardA small child is learning to ride a bike for the first time. Her dad decides it would be a good idea to start her on a small hill. The hill is inclined at 3.00° to the horizontal. The child starts partway down the hill, 9.00 m away from her dad, who stays at the top. She starts to wobble, so her dad sprints toward her from rest with an acceleration of 1.40 m/s2. How far has the child gone before her parent catches her?arrow_forward
- You are on the roof of the lecture hall, 51.8 m above ground. As your physics professor, who is 1.8 m tall, walks towards the hall at a constant speed of 1.2 m/s. If you wish to drop an egg on your professor's head, where should the professor be when you release the egg? Assume egg is in freefall and air resistance is ignored.arrow_forwardA skier is at the top of a hill with height h. Starting from rest, the skier goes down to a flat area. On this flat area, there is a section of the slope with length D where the snow has melted (there is friction here). After passing the melted section, the skier goes up a smaller hill of height h2. At the top of this hill there is a drop off and the skier launches off of it with a horizontal speed. At what horizontal distance from the base of the jump does the skier land?arrow_forwardA student at the top of a building of height h throws one ball upward with a speed of vi and then throws a second ball downward with the same initial speed vi. Just before it reaches the ground, is the final speed of the ball thrown upward (a) larger, (b) smaller, or (c) the same in magnitude, compared with the final speed of the ball thrown downward?arrow_forward
- The ceiling of a classroom is 3.00 m above the floor. A student tosses an apple vertically upward, releasing it 0.55 m above the floor. What is the maximum initial speed that can be given to the apple if it is not to touch the ceiling?arrow_forwardJulie is an avid skydiver. She has more than 300 jumps under her belt and has mastered the art of making adjustments to her body position in the air to control how fast she falls. If she arches her back and points her belly toward the ground, she reaches a terminal velocity of approximately 120 mph (176 ft/sec). If, instead, she orients her body with her head straight down, she falls faster, reaching a terminal velocity of 150 mph (220 ft/sec). Since Julie will be moving (falling) in a downward direction, we assume the downward direction is positive to simplify our calculations. Julie executes her jumps from an altitude of 12,500 ft. After she exits the aircraft, she immediately starts falling at a velocity given by v(t) = 32t. She continues to accelerate according to this velocity function until she reaches terminal velocity. After she reaches terminal velocity, her speed remains constant until she pulls her ripcord and slows down to land. On her first jump of the day, Julie orients…arrow_forwardA ball is thrown vertically upward with an initial speed of 9.0 m/s then falls back to its initial position. If you are to ignore the air resistance, what will be the total displacement of the ball?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Kinematics Part 3: Projectile Motion; Author: Professor Dave explains;https://www.youtube.com/watch?v=aY8z2qO44WA;License: Standard YouTube License, CC-BY