
(a)
Interpretation:
The degree of freedom analysis for the given process is to be calculated and all the manipulated input, output, and disturbance variables are to be identified.
Concept introduction:
For chemical processes, dynamic models consisting ordinary differential equations are derived through unsteady-state conservation laws. These laws generally include mass and energy balances.
The process models generally include algebraic relationships which commence from
Degree of freedom analysis of a process model ensures that its model equations are solvable. The expression to calculate the degree of freedom is:
Here,
(b)
Interpretation:
The degree of freedom analysis for the given process is to be calculated and all the manipulated input, output, and disturbance variables are to be identified.
Concept introduction:
For chemical processes, dynamic models consisting ordinary differential equations are derived through unsteady-state conservation laws. These laws generally include mass and energy balances.
The process models generally include algebraic relationships which commence from thermodynamics, transport phenomena, chemical kinetics, and physical properties of the processes.
Degree of freedom analysis of a process model ensures that its model equations are solvable. The expression to calculate the degree of freedom is:
Here,

Trending nowThis is a popular solution!

Chapter 2 Solutions
Process Dynamics And Control, 4e
- A gas pipeline, NPS 20 with 0.500 in. wall thickness, transports natural gas (specific gravity = 0.6) at a flow rate of 250 MMSCFD at an inlet temperature of 60°F. Assuming isothermal flow, calculate the velocity of gas at the inlet and outlet of the pipe if the inlet pressure is 1000 psig and the outlet pressure is 850 psig. The base pressure and base temperature are 14.7 psia and 60°F, respectively. Assume compressibility factor Z = 1.00. What is the erosional velocity for this pipeline based on the above data and a compressibility factor Z = 0.90?arrow_forwardH.W.1 : The elementary liquid phase reaction A + BR + S is conducted in a setup consisting of a mixed reactor, into which two reactant solutions are introduced, followed by a plug flow reactor. The component B is used in a large excess so that the reaction is first order with respect to A. Various ways to increase the production rate are suggested, one of which is to reverse the order of these units. How would this change/affect conversion?arrow_forwardH.W.2 : The kinetics of the liquid phase decomposition of A is studied in two mixed flow reactors in series, the second unit having twice the volume of the first one. At steady state with a feed with CA, = 1 mol/l and mean residence time of 96 s in the first reactor, the concentration of A in the first unit (reactor) is 0.5 mol/l and in the second is 0.25 mol/l. Find the rate equation for the decomposition of A.arrow_forward
- A natural gas consists of the following molar composition: C1 = 0.871, C2 0.084, C3 = 0.023, CO2 = 0.016 and H2S = 0.006. Calculate the gas gravity to airarrow_forward8 9:07 D Asiacell من تدوير العجلة. إستمر في إستخدام تطبیق آسياسيل للحصول على المزيد من العروض المميزة! الأحد، ١٦ مارس إنتهت صلاحية الإنترنت التي تلقيتها من تدوير العجلة. إستمر في إستخدام تطبیق آسياسيل للحصول على المزيد من العروض المميزة! الاثنين، ۱۷ مارس 1000 د ارسلت من ر رصيدك الى 7707268140 في 2025/03/17. 350 د تم إستقطاعها من رصيدك لهذه العملية 8000 د ارسلت من رصيدك الى 7707268140 في 2025/03/17. 350 د تم إستقطاعها من رصيدك لهذه العملية Vol) Voi) ٨:٥٤ ص ٢:١٤ ص ٩:٥٢ م 29:07 III =arrow_forwardPGE508 Assignment 2 A mixture with 4% n-pentane, 40% n-hexane, 50% n-heptane, and 6% n-octane is to be distilled at 14.7 lb/in² (1 atm.) with 98% of the hexane and 1% of the heptane recovered in the distillate. If the liquid feed is a saturated liquid (i.e., q= 1). Calculate i.) The product compositions, ii.) The top and bottom temperature iii.) Minimum reflux ratio (Rm), iv.) Minimum theoretical plates and v.) Actual plates when the reflux ratio is 2Rm. Table 1: Component boiling point and molar mass Component Boiling point n-C5 97°F n-C 156.2°F n-C 209.1°F n-C8 258.1°F Molar mass 72.2 86.2 100.2 114.2 Hint: Since 1% of heptane is specified to be recovered in the distillate, 99% of heptane is to be recovered in the bottom.arrow_forward
- 1. The table below shows data reported for the adsorption of n-butane on silica gel at 50°C. For this catalyst a surface area of 832 m²/g has been reported. Adsorbed concentration Gas concentration (x106 mol/cm³) (x103 mol/g) 0.08 0.02 0.28 0.09 0.60 0.15 0.70 0.195 0.96 0.23 1.20 0.27 1.54 0.325 1.60 0.35 1.92 0.365 1.90 0.385 1.94 0.395 a. Use the data and the equation described in class for Langmuir monolayer absorption to determine the surface area of the catalyst. How does it compare with the surface area reported? b. Use the BET adsorption isotherm to calculate the catalyst surface area. How do the two methods compare? c. Usethe Hutting adsorption isotherm to calculate catalyst surface area. How does it compare with the other two isotherms?arrow_forwardThe one dimensional, single phase pressure equation in its general form is as follows (p = fluid density, Q = porosity, k=permeability and m= viscosity): (po) ap ӘР pk (др dx μ дх Equation (1) A) Say in words what the terms on each side of Equation 1 actually mean B) If the rock is incompressible and the fluid compressibility is given by Cf write the 8(po)/SP term in terms of D, p and Cf.arrow_forwardPGE508 Assignment 2 A mixture with 4% n-pentane, 40% n-hexane, 50% n-heptane, and 6% n-octane is to be distilled at 14.7 lb/in² (1 atm.) with 98% of the hexane and 1% of the heptane recovered in the distillate. If the liquid feed is a saturated liquid (i.e., q = 1). Calculate i.) The product compositions, ii.) The top and bottom temperature iii.) Minimum reflux ratio (Rm), iv.) Minimum theoretical plates and v.) Actual plates when the reflux ratio is 2Rm. Table 1: Component boiling point and molar mass Component Boiling point n-C 97°F n-C 156.2°F n-C 209.1°F n-Cs 258.1°F Molar mass 72.2 86.2 100.2 114.2 Hint: Since 1% of heptane is specified to be recovered in the distillate, 99% of heptane is to be recovered in the bottom.arrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The





