(a)
Interpretation:
For chlorine the temperature at which the equipartition theory becomes valid has to be calculated.
Concept introduction:
Equipartition theorem:
According to the equipartition theorem, the total energy of a molecule is divided equally amongst the various degrees of freedom of the molecules.
(a)

Answer to Problem 2.6PR
The temperature is
Explanation of Solution
According to the equipartition theorem,
Energy contribution by each of the translational degrees of freedom is
Energy contribution by each of the rotational degrees of freedom is
For vibrational degrees of freedom, due to collisions between the molecules each vibrational degrees of freedom possess both kinetic energy and potential energy i.e. each vibration involves two degrees of freedom and hence the energy contribution by each of the vibrational degrees of freedom is given by,
Hence each vibrational degrees of freedom contributes
Now, the equipartition theorem is valid only if
But the separation between the vibrational energy levels is much greater than
It is given in the question that the energy from vibration is given by
According to the question for chlorine the separation between the vibrational energy levels is,
Now the temperature at which equipartition theorem for chlorine is valid that has to be calculated.
Hence,
Chlorine is linear diatomic molecule and hence it will have degrees of freedom
Now at higher temperature only vibrational degrees of freedom of chlorine can show equipartition
Now by expansion,
But higher temperature all the higher terms can be neglected.
Hence the temperature is,
Vibrational energy per mole,
Hence temperature is,
Hence the temperature is
(b)
Interpretation:
For a given exponential
Concept introduction:
Equipartition theorem:
According to the equipartition theorem, the total energy of a molecule is divided equally amongst the various degrees of freedom of the molecules.
(b)

Explanation of Solution
According to the equipartition theorem,
Energy contribution by each of the translational degrees of freedom is
Energy contribution by each of the rotational degrees of freedom is
For vibrational degrees of freedom, due to collisions between the molecules each vibrational degrees of freedom possess both kinetic energy and potential energy i.e. each vibration involves two degrees of freedom and hence the energy contribution by each of the vibrational degrees of freedom is given by,
Hence each vibrational degrees of freedom contributes
Now, the equipartition theorem is valid only if
But the separation between the vibrational energy levels is much greater than
It is given in the question that the energy from vibration is given by
Now the exponential form given is,
Hence expanding
Now using this expansion
Now only at higher temperature vibrational degrees of freedom gives full contribution to the total energy.
Now at higher temperature all the higher terms of the expansion will be very much lesser than one and become negligible
Hence the equation becomes,
Thus at higher temperature the exact expression for vibrational degrees of freedom reduces to the result obtained from equipartition theorem.
Want to see more full solutions like this?
Chapter 2 Solutions
Us Solutions Manual To Accompany Elements Of Physical Chemistry 7e
- Provide an IUPAC name for each of the compounds shown. (Specify (E)/(Z) stereochemistry, if relevant, for straight chain alkenes only. Pay attention to commas, dashes, etc.) H₁₂C C(CH3)3 C=C H3C CH3 CH3CH2CH CI CH3 Submit Answer Retry Entire Group 2 more group attempts remaining Previous Nextarrow_forwardArrange the following compounds / ions in increasing nucleophilicity (least to most nucleophilic) CH3NH2 CH3C=C: CH3COO 1 2 3 5 Multiple Choice 1 point 1, 2, 3 2, 1, 3 3, 1, 2 2, 3, 1 The other answers are not correct 0000arrow_forwardcurved arrows are used to illustrate the flow of electrons. using the provided starting and product structures, draw the cured electron-pushing arrows for thw following reaction or mechanistic steps. be sure to account for all bond-breaking and bond making stepsarrow_forward
- Using the graphs could you help me explain the answers. I assumed that both graphs are proportional to the inverse of time, I think. Could you please help me.arrow_forwardSynthesis of Dibenzalacetone [References] Draw structures for the carbonyl electrophile and enolate nucleophile that react to give the enone below. Question 1 1 pt Question 2 1 pt Question 3 1 pt H Question 4 1 pt Question 5 1 pt Question 6 1 pt Question 7 1pt Question 8 1 pt Progress: 7/8 items Que Feb 24 at You do not have to consider stereochemistry. . Draw the enolate ion in its carbanion form. • Draw one structure per sketcher. Add additional sketchers using the drop-down menu in the bottom right corner. ⚫ Separate multiple reactants using the + sign from the drop-down menu. ? 4arrow_forwardShown below is the mechanism presented for the formation of biasplatin in reference 1 from the Background and Experiment document. The amounts used of each reactant are shown. Either draw or describe a better alternative to this mechanism. (Note that the first step represents two steps combined and the proton loss is not even shown; fixing these is not the desired improvement.) (Hints: The first step is correct, the second step is not; and the amount of the anhydride is in large excess to serve a purpose.)arrow_forward
- Hi I need help on the question provided in the image.arrow_forwardDraw a reasonable mechanism for the following reaction:arrow_forwardDraw the mechanism for the following reaction: CH3 CH3 Et-OH Et Edit the reaction by drawing all steps in the appropriate boxes and connecting them with reaction arrows. Add charges where needed. Electron-flow arrows should start on the electron(s) of an atom or a bond and should end on an atom, bond, or location where a new bond should be created. H± EXP. L CONT. י Α [1] осн CH3 а CH3 :Ö Et H 0 N о S 0 Br Et-ÖH | P LL Farrow_forward
- 20.00 mL of 0.150 M NaOH is titrated with 37.75 mL of HCl. What is the molarity of the HCl?arrow_forward20.00 mL of 0.025 M HCl is titrated with 0.035 M KOH. What volume of KOH is needed?arrow_forward20.00 mL of 0.150 M NaOH is titrated with 37.75 mL of HCl. What is the molarity of the HCl?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





