(a)
Interpretation:
An expression for work done for a gas obeying real gas equation where repulsion predominates has to interpret and also it has to be checked whether the work done is more or less than work done for the ideal gas.
Concept introduction:
Van der Waals equation:
Van der Waals equation represents the real gas equation. Real gas molecules have their own volume and there is force of attraction and repulsion constantly working between the real gas molecules unlike the ideal gas molecules. Hence ideal gas equation is subjected to modify with pressure and volume correction and thus van der Waals equation has been formed for real gases.
Where,
P is pressure of the real gas
V is volume of the real gas
‘n’ is the number of moles of real gas molecules.
R is the gas constant
T is the temperature
‘a’ is the pressure correction term
‘b’ is the volume occupied by each molecules (volume correction term).
Ideal gas equation:
Ideal gases are those who have negligible amount of volume and no force of attraction and repulsion I between the gas molecules. The ideal gas equation is given as,
Where,
P is pressure of the real gas
V is volume of the real gas
‘n’ is the number of moles of real gas molecules.
R is the gas constant
T is the temperature
Work done:
In
For expansion of volume work done is negative and for compression of volume work done is positive.
(a)

Explanation of Solution
From van der Waals equation we get,
Now according to the given question repulsion term predominates and so van der Waals equation is reduced to,
So the work done by the gas following this equation of state has to be derived.
Applying the law of thermodynamics,
Now replacing the value of P in the above equation from the equation of state and taking temperature constant it is obtained,
Now applying the integration for volume change says from
Now for ideal gas applying the ideal gas equation
Now from the above equation it is found that
Because ideal gas has no attraction or repulsion in between the molecules but real gas has and here repulsion predominates. So it is easier for real gas to expand as repulsion is more.
Hence work done by the ideal gas is more here.
(b)
Interpretation:
The expression of work done for a real gas where attraction force predominates has to be calculated and also whether the work done by the real gas is more or less than the work done by the ideal gas has to be interpreted also.
Concept introduction:
Van der Waals equation:
Van der Waals equation represents the real gas equation. Real gas molecules have their own volume and there is force of attraction and repulsion constantly working between the real gas molecules unlike the ideal gas molecules. Hence ideal gas equation is subjected to modify with pressure and volume correction and thus van der Waals equation has been formed for real gases.
Where,
P is pressure of the real gas
V is volume of the real gas
‘n’ is the number of moles of real gas molecules.
R is the gas constant
T is the temperature
‘a’ is the pressure correction term
‘b’ is the volume occupied by each molecules (volume correction term).
Ideal gas equation:
Ideal gases are those who have negligible amount of volume and no force of attraction and repulsion I between the gas molecules. The ideal gas equation is given as,
Where,
P is pressure of the real gas
V is volume of the real gas
‘n’ is the number of moles of real gas molecules.
R is the gas constant
T is the temperature
Work done:
In thermodynamics work done by a system is to transfer energy from the system to surroundings. It is represented as,
Where,
W is the work done
P is the pressure
For expansion of volume work done is negative and for compression of volume work done is positive.
(b)

Explanation of Solution
According to the given question in the real gas the attraction force predominates and so the van der Waals equation remains as it is.
From this the expression for pressure is determined as,
From the expression of work, it is found that,
Now to calculate the work done by the real gas at constant temperature for volume change say from
Now for ideal gas applying the ideal gas equation
The repulsion term
Now the 1st term in the expression of work done by real gas is less than the work done by the ideal gas as
But anyway any logarithmic term will have less value than normal fraction and so for real gas the 2nd term will predominate and hence work done by real gas will be more than ideal gas.
Because ideal gas has no attraction or repulsion in between the molecules but real gas has and here the attraction term predominates. Now for expansion of real gas this attraction force will be a barrier and to remove this barrier more work has to be done by real gas for expansion.
So work done by the real gas having more attraction will be more than that of ideal gas.
Want to see more full solutions like this?
Chapter 2 Solutions
Us Solutions Manual To Accompany Elements Of Physical Chemistry 7e
- Predict the products of this organic reaction: 0 O ----- A + KOH ? CH3-CH2-C-O-CH2-C-CH3 Specifically, in the drawing area below draw the condensed structure of the product, or products, of this reaction. (If there's more than one product, draw them in any arrangement you like, so long as they aren't touching.) If there aren't any products because this reaction won't happen, check the No reaction box under the drawing area. No reaction Click anywhere to draw the first atom of your structure. X ⑤ èarrow_forwardPredict the products of this organic reaction: O CH3 + H2O + HCI A A? CH3-CH2-C-N-CH3 Specifically, in the drawing area below draw the condensed structure of the product, or products, of this reaction. If there's more than one product, draw them in any arrangement you like, so long as they aren't touching. If there aren't any products because this reaction won't happen, check the No reaction box under the drawing area. No Reaction Click anywhere to draw the first atom of your structure.arrow_forwardWhat is the missing reactant in this organic reaction? R+ HO-C-CH2-CH3 0= CH3 CH3 —CH, C−NH—CH CH3 + H₂O Specifically, in the drawing area below draw the condensed structure of R. If there is more than one reasonable answer, you can draw any one of them. If there is no reasonable answer, check the No answer box under the drawing area. Note for advanced students: you may assume no products other than those shown above are formed. No Answer Click anywhere to draw the first atom of your structure. €arrow_forward
- 个 CHEM&131 9267 - $25 - Intro to Mail - Hutchison, Allison (Student x Aktiv Learnin https://app.aktiv.com Draw the product of the reaction shown below. Ignore inorganic byproducts. + Na2Cr2O7 Acetone, H2SO4 Type here to search Dryng OH W Prarrow_forwardPredict the products of this organic reaction: OH + NaOH A? Specifically, in the drawing area below draw the skeletal ("line") structure of the product, or products, of this reaction. (If there's more than one product, draw them in any arrangement you like, so long as they aren't touching.) If there aren't any products because this reaction won't happen, check the No reaction box under the drawing area. No reaction Click and drag to start drawing a structure. ✓ Sarrow_forwardPredict the products of this organic reaction: CH3-C-O-CH2-CH2-C-CH3 + H₂O ? A Specifically, in the drawing area below draw the condensed structure of the product, or products, of this reaction. (If there's more than one product, draw them in any arrangement you like, so long as they aren't touching.) If there aren't any products because this reaction won't happen, check the No reaction box under the drawing area. No reaction Click anywhere to draw the first atom of your structure. :☐ darrow_forward
- DE d. Draw an arrow pushing mechanism for the following IN O CI N fo 人 P Polle DELL prt sc home end ins F5 F6 F7 F8 F9 F10 F11 F12arrow_forwardPredict the products of this organic reaction: + H₂O H* ? A Specifically, in the drawing area below draw the skeletal ("line") structure of the product, or products, of this reaction. (If there's more than one product, draw them in any arrangement you like, so long as they aren't touching.) If there aren't any products because this reaction won't happen, check the No reaction box under the drawing area. No Reaction Click and drag to start drawing a structure.arrow_forwardPredict the major organic products of the reaction below and draw them on right side of the arrow. If there will be no significant reaction, check the box below the drawing area instead. C Cl CH, OH There will be no significant reaction. + pyridine G Click and drag to start drawing a structure.arrow_forward
- What is the missing reactant in this organic reaction? H R+ H2O Δ OH 0= CH3-CH-O-CH3 + CH3-C-OH Specifically, in the drawing area below draw the condensed structure of R. If there is more than one reasonable answer, you can draw any one of them. If there is no reasonable answer, check the No answer box under the drawing area. No Answer Click anywhere to draw the first atom of your structure. dyarrow_forwardYou are trying to determine whether the following organic reaction can be done in a single synthesis step. If so, add any missing reagents or conditions in the drawing area below. If it isn't possible to do this reaction in a single synthesis step, check the box below the drawing area instead. Note for advanced students: if you have a choice of reagents to add, you should choose the least reactive and most economical reagents possible. Cl It isn't possible to do this reaction in a single synthesis step. + T OHarrow_forwardPredict the products of this organic reaction: CH3 O CH3-CH-C-O-CH2-CH2-CH3 + H₂OH+ Η ? A Specifically, in the drawing area below draw the condensed structure of the product, or products, of this reaction. (If there's more than one product, draw them in any arrangement you like, so long as they aren't touching.) If there aren't any products because this reaction won't happen, check the No reaction box under the drawing area. No Reaction Click anywhere to draw the first atom of your structure.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





