![Elements Of Physical Chemistry](https://www.bartleby.com/isbn_cover_images/9780198796701/9780198796701_largeCoverImage.gif)
(a)
Interpretation:
For chlorine the temperature at which the equipartition theory becomes valid has to be calculated.
Concept introduction:
Equipartition theorem:
According to the equipartition theorem, the total energy of a molecule is divided equally amongst the various degrees of freedom of the molecules.
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 2.6PR
The temperature is
Explanation of Solution
According to the equipartition theorem,
Energy contribution by each of the translational degrees of freedom is
Energy contribution by each of the rotational degrees of freedom is
For vibrational degrees of freedom, due to collisions between the molecules each vibrational degrees of freedom possess both kinetic energy and potential energy i.e. each vibration involves two degrees of freedom and hence the energy contribution by each of the vibrational degrees of freedom is given by,
Hence each vibrational degrees of freedom contributes
Now, the equipartition theorem is valid only if
But the separation between the vibrational energy levels is much greater than
It is given in the question that the energy from vibration is given by
According to the question for chlorine the separation between the vibrational energy levels is,
Now the temperature at which equipartition theorem for chlorine is valid that has to be calculated.
Hence,
Chlorine is linear diatomic molecule and hence it will have degrees of freedom
Now at higher temperature only vibrational degrees of freedom of chlorine can show equipartition
Now by expansion,
But higher temperature all the higher terms can be neglected.
Hence the temperature is,
Vibrational energy per mole,
Hence temperature is,
Hence the temperature is
(b)
Interpretation:
For a given exponential
Concept introduction:
Equipartition theorem:
According to the equipartition theorem, the total energy of a molecule is divided equally amongst the various degrees of freedom of the molecules.
(b)
![Check Mark](/static/check-mark.png)
Explanation of Solution
According to the equipartition theorem,
Energy contribution by each of the translational degrees of freedom is
Energy contribution by each of the rotational degrees of freedom is
For vibrational degrees of freedom, due to collisions between the molecules each vibrational degrees of freedom possess both kinetic energy and potential energy i.e. each vibration involves two degrees of freedom and hence the energy contribution by each of the vibrational degrees of freedom is given by,
Hence each vibrational degrees of freedom contributes
Now, the equipartition theorem is valid only if
But the separation between the vibrational energy levels is much greater than
It is given in the question that the energy from vibration is given by
Now the exponential form given is,
Hence expanding
Now using this expansion
Now only at higher temperature vibrational degrees of freedom gives full contribution to the total energy.
Now at higher temperature all the higher terms of the expansion will be very much lesser than one and become negligible
Hence the equation becomes,
Thus at higher temperature the exact expression for vibrational degrees of freedom reduces to the result obtained from equipartition theorem.
Want to see more full solutions like this?
Chapter 2 Solutions
Elements Of Physical Chemistry
- Show work...don't give Ai generated solutionarrow_forwardGiven the standard enthalpies of formation for the following substances, determine the reaction enthalpy for the following reaction. 3A(g) + 1B (g) 4C (g) + 7D (g) Substance AH in kJ/mol A (g) - 25.07 B (g) - 36.51 C (g) - 90.09 D (g) + 56.11 AHran =?kJarrow_forwardWhat is the change in internal energy (ΔU) when a system is heated with 42.0 J of energy while it does 110.0 J of work?arrow_forward
- Can you help me solve this problem and explain what the answers are?arrow_forwardFor which reaction below does the enthalpy change under standard conditions correspond to a standard enthalpy of formation? (Choose all that applies) SO2(g) + 1/2 O2(g) → SO3(g) 2H2(g) + C(s) → CH4(g) Mg(s) + 1/2 O2(g) → MgO(s) CO(g) + H2O(g) → CO2(g) + H2(g) CO2(g) + H2(g) → CO(g) + H2O(g) 1/2 H2(g) + 1/2 N2(g) + 3/2 O2(g) → HNO3(g) CO2(g) + C(s) 2CO(g) N2(g) + 202(g) → 2NO2(g)arrow_forwardChoose all the molecules with zero standard-enthalpy-of-formation (AH% = 0) Fe(s) FeCl2(s) N2(g) H2O(l) 02(g) C(graphite) K(s) H2O(g)arrow_forward
- 8.5 g of potassium hydroxide (molar mass = 56.1 g/mol) dissolves in 125 g of water and the temperature of the solution increases by 15.58°C. Calculate the AH soln for potassium hydroxide. Assume the specific heat capacity of the solution is 4.2 J.g¨¹.ºC-1. KOH(s) → →K+ K(aq) + OH AH solution = ?kJ/mol (aq)arrow_forwardWhat will be the final temperature of a 8.79 g piece of iron (CP = 25.09 J/(mol · oC)) initially at 25.0oC, if it is supplied with 302.8 J from a stove?arrow_forwardIdentify the set of stoichiometric coefficients that balances the reaction equation for the combustion of the hydrocarbon below: _ C19 H4002 → CO2 + H2Oarrow_forward
- The cooling system in an automobile holds 11.3 L of ethylene glycol antifreeze. How much energy is absorbed when the temperature of the ethylene glycol goes from 20oC to 100oC? The density and specific heat capacity of ethylene glycol are 1.11 g/mL and 2.42 J/(g ⋅ oC), respectively.arrow_forwardWhich statement about the following chemical reaction is not correct? 2NH3+202 →→→ N2O + 3H₂O ○ It requires 2 mol of ammonia to produce 3 mol of water. It requires 2 mol of dioxygen to produce 1 mol of N2O. ○ Nine moles of water are produced when four moles of ammonia are consumed. Two moles of N2O would be produced when four moles of dioxygen are consumed. Two moles of ammonia react with two moles of dioxygen.arrow_forwardIf 169.7 g of NaOH (40.0 g/mol) were used to prepare 3411.0 mL of solution, what would the concentration be? Group of answer choicesarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)