
Concept explainers
(a)
Interpretation:
The variation of internal energy of a non-metallic solid at very low temperature
Concept introduction:
Internal energy:
Internal energy of a system is the total energy contained in the system. It keeps an account for the loss and gain of energy of the system due to changes in internal state. It is dependent on temperature and pressure.
It is denoted as
1st law of
The 1st law of thermodynamics states that the total energy of the isolated system is constant and that can be transformed into one form to another like heat to work or vice versa but can neither be created nor be destroyed.
It is represented as,
Where,
W is the energy transferred as the form of work to the system.
Q is the energy transferred as the form of heat to the system
Heat capacity at constant volume:
Specific heat capacity at constant volume is defined as the amount of heat required to increase the temperature by
It is denoted as
(b)
Interpretation:
The expression of molar specific heat at constant volume has to be interpreted at temperature
Concept introduction:
Internal energy:
Internal energy of a system is the total energy contained in the system. It keeps an account for the loss and gain of energy of the system due to changes in internal state. It is dependent on temperature and pressure.
It is denoted as
Internal energy per mole is called molar internal energy that is denoted by
1st law of thermodynamics:
The 1st law of thermodynamics states that the total energy of the isolated system is constant and that can be transformed into one form to another like heat to work or vice versa but can neither be created nor be destroyed.
It is represented as,
Where,
W is the energy transferred as the form of work to the system.
Q is the energy transferred as the form of heat to the system
Heat capacity at constant volume:
Specific heat capacity at constant volume is defined as the amount of heat required to increase the temperature by
It is denoted as
Specific heat capacity at constant volume per mole is considered as molar specific heat capacity at constant volume which is denoted as

Want to see the full answer?
Check out a sample textbook solution
Chapter 2 Solutions
Elements Of Physical Chemistry
- Help me solve this problem.arrow_forwardDraw a mechanism for the following synthetic transformation including reagents and any isolable intermediates throughout the process. Please clearly indicate bond cleavage/formation using curly arrows. MeO2Carrow_forwardCHEM 310 Quiz 8 Organic Chemistry II Due: Tuesday, April 25th, at 11:59 pm. This quiz is open textbook / open notes - but you must work alone. You cannot use the internet or the solutions manual for the book. Scan in your work and record an explanation of your mechanism. You may record this any way that you like. One way would be to start an individual Zoom meeting, start recording, "share your screen" and then talk through the problem. This will be converted to an .mp4 file that you can upload into Canvas using the "record/upload media" feature. Pyridine, benzoic acid and benzene are dissolved in ethyl acetate. Design and provide a plan / flow chart for separating and isolating each of these components. Pyridine and benzene are liquids at room temperature. Benzoic acid is a solid. You have ethyl acetate, 2M NaOH, 2M HCI and anhydrous MgSO4 available, as well as all the glassware and equipment that you used in the organic lab this year. Provide accurate acid/base reactions for any…arrow_forward
- Can anyone help me solve this step by step. Thank you in advaarrow_forwardPlease draw the mechanism for this Friedel-crafts acylation reaction using arrowsarrow_forwardDraw the Fischer projection of D-fructose. Click and drag to start drawing a structure. Skip Part Check AP 14 tv SC F1 F2 80 F3 a F4 ! 2 # 3 CF F5 75 Ax MacBook Air 894 $ 5olo % Λ 6 > W F6 K F7 &arrow_forward
- Consider this step in a radical reaction: Y What type of step is this? Check all that apply. Draw the products of the step on the right-hand side of the drawing area below. If more than one set of products is possible, draw any set. Also, draw the mechanism arrows on the left-hand side of the drawing area to show how this happens. ionization propagation initialization passivation none of the abovearrow_forward22.16 The following groups are ortho-para directors. (a) -C=CH₂ H (d) -Br (b) -NH2 (c) -OCHS Draw a contributing structure for the resonance-stabilized cation formed during elec- trophilic aromatic substitution that shows the role of each group in stabilizing the intermediate by further delocalizing its positive charge. 22.17 Predict the major product or products from treatment of each compound with Cl₁/FeCl₂- OH (b) NO2 CHO 22.18 How do you account for the fact that phenyl acetate is less reactive toward electro- philic aromatic substitution than anisole? Phenyl acetate Anisole CH (d)arrow_forwardShow how to convert ethyl benzene to (a) 2,5-dichlorobenzoic acid and (b) 2,4-dichlorobenzoic acid.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





