![CHEMISTRY (LL) W/CNCT >BI<](https://compass-isbn-assets.s3.amazonaws.com/isbn_cover_images/9781260572384/9781260572384_smallCoverImage.gif)
(a)
Interpretation:
Formula for Copper(I) cyanide has to be written.
Concept Introduction:
Refer to part (a).
- The prefixes on each atom indicates the number of that atoms in the compound.
- The number written on the subscript of the anion is numerically equal to the charge on the cation and vice versa.
- Subscripts are discarded when the numerical charge on cation and anion are equal.
- When a metal has more than one positive oxidation state, its lowest oxidation number has name of the metal ion ending with ‘ous’ and highest oxidation number has name of the metal ion ending with ‘ic’. This rule is applicable when oxidation number of metal is not more than three.
- If a metal ion has multiple number of oxidation states more than three, then Roman numeral has to be used within square brackets to indicate the oxidation number of metal ion.
- Nomenclature of binary acids and oxoacids are not similar. Binary acids are named based on the non-metal atom present in them. Oxoacids are named on the basis of polyatomic anion present in them.
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 2.62QP
Formula for Copper(I) cyanide is written as
Explanation of Solution
With reference to table 2.3 in the text book, anions and cations formed by various elements are named.
Cyanide is
(b)
Interpretation:
Formula for Strontium chlorite has to be written.
Concept Introduction:
Refer to part (a).
- The prefixes on each atom indicates the number of that atoms in the compound.
- The number written on the subscript of the anion is numerically equal to the charge on the cation and vice versa.
- Subscripts are discarded when the numerical charge on cation and anion are equal.
- When a metal has more than one positive oxidation state, its lowest oxidation number has name of the metal ion ending with ‘ous’ and highest oxidation number has name of the metal ion ending with ‘ic’. This rule is applicable when oxidation number of metal is not more than three.
- If a metal ion has multiple number of oxidation states more than three, then Roman numeral has to be used within square brackets to indicate the oxidation number of metal ion.
- Nomenclature of binary acids and oxoacids are not similar. Binary acids are named based on the non-metal atom present in them. Oxoacids are named on the basis of polyatomic anion present in them.
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 2.62QP
Formula for Strontium chlorite is written as
Explanation of Solution
With reference to table 2.3 in the text book, anions and cations formed by various elements are named.
Chlorite is
(c)
Interpretation:
Formula for Perbromic acid has to be written.
Concept Introduction:
Refer to part (a).
- The prefixes on each atom indicates the number of that atoms in the compound.
- The number written on the subscript of the anion is numerically equal to the charge on the cation and vice versa.
- Subscripts are discarded when the numerical charge on cation and anion are equal.
- When a metal has more than one positive oxidation state, its lowest oxidation number has name of the metal ion ending with ‘ous’ and highest oxidation number has name of the metal ion ending with ‘ic’. This rule is applicable when oxidation number of metal is not more than three.
- If a metal ion has multiple number of oxidation states more than three, then Roman numeral has to be used within square brackets to indicate the oxidation number of metal ion.
- Nomenclature of binary acids and oxoacids are not similar. Binary acids are named based on the non-metal atom present in them. Oxoacids are named on the basis of polyatomic anion present in them.
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 2.62QP
Formula for Perbromic acid is written as
Explanation of Solution
Oxoacids are named on the basis of polyatomic anion present in them. Here the polyatomic anion is
(d)
Interpretation:
Formula for the given compound has to be written.
Concept Introduction:
Refer to part (a).
- The prefixes on each atom indicates the number of that atoms in the compound.
- The number written on the subscript of the anion is numerically equal to the charge on the cation and vice versa.
- Subscripts are discarded when the numerical charge on cation and anion are equal.
- When a metal has more than one positive oxidation state, its lowest oxidation number has name of the metal ion ending with ‘ous’ and highest oxidation number has name of the metal ion ending with ‘ic’. This rule is applicable when oxidation number of metal is not more than three.
- If a metal ion has multiple number of oxidation states more than three, then Roman numeral has to be used within square brackets to indicate the oxidation number of metal ion.
- Nomenclature of binary acids and oxoacids are not similar. Binary acids are named based on the non-metal atom present in them. Oxoacids are named on the basis of polyatomic anion present in them.
(d)
![Check Mark](/static/check-mark.png)
Answer to Problem 2.62QP
Formula of the compound Hydroiodic acid is written as
Explanation of Solution
Binary acids are named based on the non-metal atom present in them. Non-metal in this acid is iodine. Thus the formula of the compound is written as
(e)
Interpretation:
Formula for the given compound has to be written.
Concept Introduction:
Refer to part (a).
- The prefixes on each atom indicates the number of that atoms in the compound.
- The number written on the subscript of the anion is numerically equal to the charge on the cation and vice versa.
- Subscripts are discarded when the numerical charge on cation and anion are equal.
- When a metal has more than one positive oxidation state, its lowest oxidation number has name of the metal ion ending with ‘ous’ and highest oxidation number has name of the metal ion ending with ‘ic’. This rule is applicable when oxidation number of metal is not more than three.
- If a metal ion has multiple number of oxidation states more than three, then Roman numeral has to be used within square brackets to indicate the oxidation number of metal ion.
- Nomenclature of binary acids and oxoacids are not similar. Binary acids are named based on the non-metal atom present in them. Oxoacids are named on the basis of polyatomic anion present in them.
(e)
![Check Mark](/static/check-mark.png)
Answer to Problem 2.62QP
Formula of the compound Disodium ammonium phosphate is written as
Explanation of Solution
The compound
The charge on the anion
Thus formula of the compound Disodium ammonium phosphate is written as
(f)
Interpretation:
Formula for the given compound has to be written.
Concept Introduction:
Refer to part (a).
- The prefixes on each atom indicates the number of that atoms in the compound.
- The number written on the subscript of the anion is numerically equal to the charge on the cation and vice versa.
- Subscripts are discarded when the numerical charge on cation and anion are equal.
- When a metal has more than one positive oxidation state, its lowest oxidation number has name of the metal ion ending with ‘ous’ and highest oxidation number has name of the metal ion ending with ‘ic’. This rule is applicable when oxidation number of metal is not more than three.
- If a metal ion has multiple number of oxidation states more than three, then Roman numeral has to be used within square brackets to indicate the oxidation number of metal ion.
- Nomenclature of binary acids and oxoacids are not similar. Binary acids are named based on the non-metal atom present in them. Oxoacids are named on the basis of polyatomic anion present in them.
(f)
![Check Mark](/static/check-mark.png)
Answer to Problem 2.62QP
Formula of the compound Lead(II) carbonate is written as
Explanation of Solution
The cation and anion in Lead(II) carbonate are lead(II) ion
Hence the formula is
The formula can be simplified and written as the same number in subscript gets called and thus the formula of the compound Magnesium phosphate is written as
(g)
Interpretation:
Formula for the given compound has to be written.
Concept Introduction:
Refer to part (a).
- The prefixes on each atom indicates the number of that atoms in the compound.
- The number written on the subscript of the anion is numerically equal to the charge on the cation and vice versa.
- Subscripts are discarded when the numerical charge on cation and anion are equal.
- When a metal has more than one positive oxidation state, its lowest oxidation number has name of the metal ion ending with ‘ous’ and highest oxidation number has name of the metal ion ending with ‘ic’. This rule is applicable when oxidation number of metal is not more than three.
- If a metal ion has multiple number of oxidation states more than three, then Roman numeral has to be used within square brackets to indicate the oxidation number of metal ion.
- Nomenclature of binary acids and oxoacids are not similar. Binary acids are named based on the non-metal atom present in them. Oxoacids are named on the basis of polyatomic anion present in them.
(g)
![Check Mark](/static/check-mark.png)
Answer to Problem 2.62QP
Formula for the compound Tin(II) fluoride is written as
Explanation of Solution
The cation and anion in Tin(II) fluoride are Tin(II) ion
Hence the formula is
(h)
Interpretation:
Formula for the given compound has to be written.
Concept Introduction:
Refer to part (a).
- The prefixes on each atom indicates the number of that atoms in the compound.
- The number written on the subscript of the anion is numerically equal to the charge on the cation and vice versa.
- Subscripts are discarded when the numerical charge on cation and anion are equal.
- When a metal has more than one positive oxidation state, its lowest oxidation number has name of the metal ion ending with ‘ous’ and highest oxidation number has name of the metal ion ending with ‘ic’. This rule is applicable when oxidation number of metal is not more than three.
- If a metal ion has multiple number of oxidation states more than three, then Roman numeral has to be used within square brackets to indicate the oxidation number of metal ion.
- Nomenclature of binary acids and oxoacids are not similar. Binary acids are named based on the non-metal atom present in them. Oxoacids are named on the basis of polyatomic anion present in them.
(h)
![Check Mark](/static/check-mark.png)
Answer to Problem 2.62QP
Formula for the compound Tetraphosphorus decasulfide is written as
Explanation of Solution
The prefix ‘tetra’ indicates 4 P atoms and ‘deca’ indicates 10 S atoms.
Hence the formula is
(i)
Interpretation:
Formula for the given compound has to be written.
Concept Introduction:
Refer to part (a).
- The prefixes on each atom indicates the number of that atoms in the compound.
- The number written on the subscript of the anion is numerically equal to the charge on the cation and vice versa.
- Subscripts are discarded when the numerical charge on cation and anion are equal.
- When a metal has more than one positive oxidation state, its lowest oxidation number has name of the metal ion ending with ‘ous’ and highest oxidation number has name of the metal ion ending with ‘ic’. This rule is applicable when oxidation number of metal is not more than three.
- If a metal ion has multiple number of oxidation states more than three, then Roman numeral has to be used within square brackets to indicate the oxidation number of metal ion.
- Nomenclature of binary acids and oxoacids are not similar. Binary acids are named based on the non-metal atom present in them. Oxoacids are named on the basis of polyatomic anion present in them.
(i)
![Check Mark](/static/check-mark.png)
Answer to Problem 2.62QP
Formula of the compound Mercury(II) oxide is written as
Explanation of Solution
The cation and anion in Mercury(II) oxide are mercury(II) ion
Hence the formula is
The formula can be simplified and written as the same number in subscript gets called and thus the formula of the compound Mercury(II) oxide is written as
(j)
Interpretation:
Formula for the given compound has to be written.
Concept Introduction:
Refer to part (a).
- The prefixes on each atom indicates the number of that atoms in the compound.
- The number written on the subscript of the anion is numerically equal to the charge on the cation and vice versa.
- Subscripts are discarded when the numerical charge on cation and anion are equal.
- When a metal has more than one positive oxidation state, its lowest oxidation number has name of the metal ion ending with ‘ous’ and highest oxidation number has name of the metal ion ending with ‘ic’. This rule is applicable when oxidation number of metal is not more than three.
- If a metal ion has multiple number of oxidation states more than three, then Roman numeral has to be used within square brackets to indicate the oxidation number of metal ion.
- Nomenclature of binary acids and oxoacids are not similar. Binary acids are named based on the non-metal atom present in them. Oxoacids are named on the basis of polyatomic anion present in them.
(j)
![Check Mark](/static/check-mark.png)
Answer to Problem 2.62QP
Formula of Mercury(I) iodide is written as
Explanation of Solution
The cation and anion in Mercury(I) iodide are mercury(I) ion
Hence the formula is
(k)
Interpretation:
Formula for the given compound has to be written.
Concept Introduction:
Refer to part (a).
- The prefixes on each atom indicates the number of that atoms in the compound.
- The number written on the subscript of the anion is numerically equal to the charge on the cation and vice versa.
- Subscripts are discarded when the numerical charge on cation and anion are equal.
- When a metal has more than one positive oxidation state, its lowest oxidation number has name of the metal ion ending with ‘ous’ and highest oxidation number has name of the metal ion ending with ‘ic’. This rule is applicable when oxidation number of metal is not more than three.
- If a metal ion has multiple number of oxidation states more than three, then Roman numeral has to be used within square brackets to indicate the oxidation number of metal ion.
- Nomenclature of binary acids and oxoacids are not similar. Binary acids are named based on the non-metal atom present in them. Oxoacids are named on the basis of polyatomic anion present in them.
(k)
![Check Mark](/static/check-mark.png)
Answer to Problem 2.62QP
Formula of selenium hexafluoride is written as
Explanation of Solution
In Selenium hexafluoride the prefix ‘hexa’ indicates six F atoms are bonded to Se.
Hence the formula is written as
Want to see more full solutions like this?
Chapter 2 Solutions
CHEMISTRY (LL) W/CNCT >BI<
- 1. For the four structures provided, Please answer the following questions in the table below. a. Please draw π molecular orbital diagram (use the polygon-and-circle method if appropriate) and fill electrons in each molecular orbital b. Please indicate the number of π electrons c. Please indicate if each molecule provided is anti-aromatic, aromatic, or non- aromatic TT MO diagram Number of π e- Aromaticity Evaluation (X choose one) Non-aromatic Aromatic Anti-aromatic || ||| + IVarrow_forward1.3 grams of pottasium iodide is placed in 100 mL of o.11 mol/L lead nitrate solution. At room temperature, lead iodide has a Ksp of 4.4x10^-9. How many moles of precipitate will form?arrow_forwardQ3: Circle the molecules that are optically active: ДДДДarrow_forward
- 6. How many peaks would be observed for each of the circled protons in the compounds below? 8 pts CH3 CH3 ΤΙ A. H3C-C-C-CH3 I (₁₁ +1)= 7 H CI B. H3C-C-CI H (3+1)=4 H LIH)=2 C. (CH3CH2-C-OH H D. CH3arrow_forwardNonearrow_forwardQ1: Draw the most stable and the least stable Newman projections about the C2-C3 bond for each of the following isomers (A-C). Are the barriers to rotation identical for enantiomers A and B? How about the diastereomers (A versus C or B versus C)? H Br H Br (S) CH3 (R) CH3 H3C (S) H3C H Br Br H A C enantiomers H Br H Br (R) CH3 H3C (R) (S) CH3 H3C H Br Br H B D identicalarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305580343/9781305580343_smallCoverImage.gif)