
EBK SYSTEM DYNAMICS
3rd Edition
ISBN: 8220100254963
Author: Palm
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Question
Chapter 2, Problem 2.48P
To determine
The steady-state difference of the input
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
13.44 The end of a cylindrical liquid cryogenic propellant
tank in free space is to be protected from external
(solar) radiation by placing a thin metallic shield in
front of the tank. Assume the view factor Fts between
the tank and the shield is unity; all surfaces are diffuse
and gray, and the surroundings are at 0 K.
Tank
T₁
Shield, T
T₁ = 100 K
E1
Solar
irradiation
Gs
ε₁ = ε₂ = 0.05
ε₁ = 0.10
Gs = 1250 W/m²
E2
Find the temperature of the shield T, and the heat flux
(W/m²) to the end of the tank.
question 664 thank you
13.38 Consider the attic of a home located in a hot climate.
The floor of the attic is characterized by a width of
L₁ = 8 m while the roof makes an angle of 0 = 30° from
the horizontal direction, as shown in the schematic.
The homeowner wishes to reduce the heat load to the
home by adhering bright aluminum foil (ε = 0.07) onto
the surfaces of the attic space. Prior to installation of
the foil, the surfaces are of emissivity & = 0.90.
Attic
A2, 82, T2 0 = 30°
A1, E1, T₁
土
L₁ = 8 m
(a) Consider installation on the bottom of the attic
roof only. Determine the ratio of the radiation heat
transfer after to before the installation of the foil.
(b) Determine the ratio of the radiation heat transfer
after to before installation if the foil is installed
only on the top of the attic floor.
(c) Determine the ratio of the radiation heat transfer if
the foil is installed on both the roof bottom and the
floor top.
Chapter 2 Solutions
EBK SYSTEM DYNAMICS
Ch. 2 - Prob. 2.1PCh. 2 - Solve each of the following problems by direct...Ch. 2 - Solve each of the following problems by separation...Ch. 2 - Prob. 2.4PCh. 2 - Prob. 2.5PCh. 2 - Obtain the Laplace transform of the following...Ch. 2 - Obtain the Laplace transform of the function shown...Ch. 2 - Prob. 2.8PCh. 2 - Prob. 2.9PCh. 2 - Prob. 2.10P
Ch. 2 - Prob. 2.11PCh. 2 - Obtain the inverse Laplace transform xt for each...Ch. 2 - Solve the following problems: 5x=7tx0=3...Ch. 2 - Solve the following: 5x+7x=0x0=4 5x+7x=15x0=0...Ch. 2 - Solve the following problems: x+10x+21x=0x0=4x0=3...Ch. 2 - Solve the following problems: x+7x+10x=20x0=5x0=3...Ch. 2 - Solve the following problems: 3x+30x+63x=5x0=x0=0...Ch. 2 - Solve the following problems where x0=x0=0 ....Ch. 2 - Invert the following transforms: 6ss+5 4s+3s+8...Ch. 2 - Invert the following transforms: 3s+2s2s+10...Ch. 2 - Prob. 2.21PCh. 2 - Compare the LCD method with equation (2.4.4) for...Ch. 2 - Prob. 2.23PCh. 2 - Prob. 2.24PCh. 2 - (a) Prove that the second-order system whose...Ch. 2 - For each of the following models, compute the time...Ch. 2 - Prob. 2.27PCh. 2 - Prob. 2.28PCh. 2 - Prob. 2.29PCh. 2 - If applicable, compute , , n , and d for the...Ch. 2 - Prob. 2.31PCh. 2 - For each of the following equations, determine the...Ch. 2 - Prob. 2.33PCh. 2 - Obtain the transfer functions Xs/Fs and Ys/Fs for...Ch. 2 - a. Obtain the transfer functions Xs/Fs and Ys/Fs...Ch. 2 - Prob. 2.36PCh. 2 - Solve the following problems for xt . Compare the...Ch. 2 - Prob. 2.38PCh. 2 - Prob. 2.39PCh. 2 - Prob. 2.40PCh. 2 - Determine the general form of the solution of the...Ch. 2 - a. Use the Laplace transform to obtain the form of...Ch. 2 - Prob. 2.43PCh. 2 - Prob. 2.44PCh. 2 - Obtain the inverse transform in the form xt=Asint+...Ch. 2 - Use the Laplace transform to solve the following...Ch. 2 - Express the oscillatory part of the solution of...Ch. 2 - Prob. 2.48PCh. 2 - Prob. 2.49PCh. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - Prob. 2.52PCh. 2 - Prob. 2.53PCh. 2 - 2.54 The Taylor series expansion for tan t...Ch. 2 - 2.55 Derive the initial value theorem:
Ch. 2 - Prob. 2.56PCh. 2 - Prob. 2.57PCh. 2 - Use MATLAB to obtain the inverse transform of the...Ch. 2 - Use MATLAB to obtain the inverse transform of the...Ch. 2 - Use MATLAB to solve for and plot the unit-step...Ch. 2 - Use MATLAB to solve for and plot the unit-impulse...Ch. 2 - Use MATLAB to solve for and plot the impulse...Ch. 2 - Use MATLAB to solve for and plot the response of...
Knowledge Booster
Similar questions
- 13.1 Determine F2 and F2 for the following configura- tions using the reciprocity theorem and other basic shape factor relations. Do not use tables or charts. (a) Small sphere of area A, under a concentric hemi- sphere of area A₂ = 3A₁ A₂ A1 (a) (b) Long duct. Also, what is F₁₂? A₂ Αν (b) (c) Long inclined plates (point B is directly above the center of A₁) B 100 mm A₂ - 220 mm (c) (d) Long cylinder lying on infinite plane + A₁ Az (d) (e) Hemisphere-disk arrangement -A₂, hemisphere, diameter D A₂ A₁, disk, diameter D/2 (e) (f) Long, open channel 1 m AA₂ 2 m (f) (g) Long cylinders with A₁ = 4A₁. Also, what is F₁₂? -D₁ A1 -A₂ -D2 (e) (h) Long, square rod in a long cylinder. Also, what is F22? w=D/5 18 A₁ -A2 (h) -Darrow_forward13.9 Determine the shape factor, F12, for the rectangles shown. 6 m 1 3 m 6 m 1 m 2 6 m 1 0.5 m 2 1 m (a) Perpendicular rectangles without a common edge. -1 m. (b) Parallel rectangles of unequal areas.arrow_forwardI keep getting the wrong answer i have gotten 6519.87 and 319.71arrow_forward
- thank you for previous answer I apologize if the acceleration was unclear it is underlined now along with values in tablesarrow_forward११११११११ TABLE Much 160,000kg Croll 0,005 CD Ap Par ng При nchs 0.15 5m² 1.2kg/m³ 0.98 0.9 0,98 0,9 0,88 IF 20 10 to add The train is going to make several stops along its journey. It will be important for the train to accelerate quickdy to get back up to speed. In order to get Tesla Model S motors until we get the combined The Forque and power needed we are goins bined power and forque needed to accelerate from 0 to 324 km/hr in less than 5 Minutes. Tesla Prated 270 kW Tesla Trated Twheel ng Jaxle 440 NM 20 8.5kgm² 0.45M a) What is the minimum whole number of Tesla Motors required to achieve accelerate the train from 0 to 324 km/hr in less than 5 Nnutes? Seperate the acceleration into constant torque and constant power 0. b) How long does it take the train to accelerate from 0 to 324 km/hr with the number of Tesla motors from part a? c) Using Matlab plot the relocity profile as a function of time, Is this a constant acceleration profile? Barrow_forwardExample find f(t)? -4s F(s)= (s² + 4)²arrow_forward
- draw a kinematic diagramarrow_forwardRigid bodies ENG2016. Full complete solutions need okk don't use guidelines but solve full accurate steps by steps don't use chat gpt or any other ai okkk just solve complete solutions okkk take your time but solve complete solutionsarrow_forwardQuestion 6 I need to show all work step by step dynamicsarrow_forward
- Qu. 3 The automobile is originally at rest s = 0. If it then starts to increase its speed at i = (0.05t2)ft/s?, where t is in seconds, determine the magnitudes of its velocity and acceleration at s = 550 ft. please show all work from dynamics step by step formulaarrow_forwardquestion 5 and 6 from dynamics I need to show all work step by step problemsarrow_forwardStudy Area Document Sharing User Settings Access Pearson mylabmastering.pearson.com P Pearson MyLab and Mastering The crash cushion for a highway barrier consists of a nest of barrels filled with an impact-absorbing material. The barrier stopping force is measured versus the vehicle penetration into the barrier. (Figure 1) Part A P Course Home b My Questions | bartleby Review Determine the distance a car having a weight of 4000 lb will penetrate the barrier if it is originally traveling at 55 ft/s when it strikes the first barrel. Express your answer to three significant figures and include the appropriate units. Figure 1 of 1 36 μΑ S = Value Units Submit Request Answer Provide Feedback ? Next >arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY