A glider of length 12.4 cm moves on an air track with constant acceleration (Fig P2.19). A time interval of 0.628 s elapses between the moment when its front end passes a fixed point Ⓐ along the track and the moment when its back end passes this point. Next, a time interval of 1.39 s elapses between the moment when the back end of the glider passes the point Ⓐ and the moment when the front end of the glider passes a second point Ⓑ farther down the track. After that, an additional 0.431 s elapses until the back end of the glider passes point Ⓑ. (a) Find the average speed of the glider as it passes point Ⓐ. (b) Find the acceleration of the glider. (c) Explain how you can compute the acceleration without knowing the distance between points Ⓐ and Ⓑ.
A glider of length 12.4 cm moves on an air track with constant acceleration (Fig P2.19). A time interval of 0.628 s elapses between the moment when its front end passes a fixed point Ⓐ along the track and the moment when its back end passes this point. Next, a time interval of 1.39 s elapses between the moment when the back end of the glider passes the point Ⓐ and the moment when the front end of the glider passes a second point Ⓑ farther down the track. After that, an additional 0.431 s elapses until the back end of the glider passes point Ⓑ. (a) Find the average speed of the glider as it passes point Ⓐ. (b) Find the acceleration of the glider. (c) Explain how you can compute the acceleration without knowing the distance between points Ⓐ and Ⓑ.
A glider of length 12.4 cm moves on an air track with constant acceleration (Fig P2.19). A time interval of 0.628 s elapses between the moment when its front end passes a fixed point Ⓐ along the track and the moment when its back end passes this point. Next, a time interval of 1.39 s elapses between the moment when the back end of the glider passes the point Ⓐ and the moment when the front end of the glider passes a second point Ⓑ farther down the track. After that, an additional 0.431 s elapses until the back end of the glider passes point Ⓑ. (a) Find the average speed of the glider as it passes point Ⓐ. (b) Find the acceleration of the glider. (c) Explain how you can compute the acceleration without knowing the distance between points Ⓐ and Ⓑ.
A certain brand of freezer is advertised to use 730 kW h of energy per year.
Part A
Assuming the freezer operates for 5 hours each day, how much power does it require while operating?
Express your answer in watts.
ΜΕ ΑΣΦ
?
P
Submit
Request Answer
Part B
W
If the freezer keeps its interior at a temperature of -6.0° C in a 20.0° C room, what is its theoretical maximum
performance coefficient?
Enter your answer numerically.
K =
ΜΕ ΑΣΦ
Submit
Request Answer
Part C
What is the theoretical maximum amount of ice this freezer could make in an hour, starting with water at 20.0°C?
Express your answer in kilograms.
m =
Ο ΑΣΦ
kg
Describe the development of rational choice theory in sociology.
Please include
A-E please
Chapter 2 Solutions
Physics for Scientists and Engineers, Technology Update, Hybrid Edition (with Enhanced WebAssign Multi-Term LOE Printed Access Card for Physics)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.