
(a)
Interpretation:
The relative error in the voltage reading if the internal resistance of the voltmeter was 4000 χ should be calculated.
Concept introduction:
The percentage relative loading error of the voltmeter Er =
VM = Voltage of the meter
VX = True voltage of the source
When resistors are in series, a voltage divider. V = V1 + V2 + V3
The current in a series circuit is everywhere the same. In other words, I = I1 = I2 = I3
The total resistance Rs of a series circuit is equal to the sum of the resistances of the individual components. Rs = R1 + R2 + R3
Ohm’s law;
Ohm’s law describes the relationship among voltage, resistance, and current in a resistive series circuit.
V = IR
V = Voltage I = Current R = resistant
(b)
Interpretation:
The relative error in the voltage reading if the internal resistance of the voltmeter was 80.0 kχ should be calculated.
Concept introduction:
The percentage relative loading error of the voltmeter E r =
VM = Voltage of the meter
VX = True voltage of the source
When resistors are in series, a voltage divider. V = V1 + V2 + V3
The current in a series circuit is everywhere the same. In other words, I = I1 = I2 = I3
The total resistance Rs of a series circuit is equal to the sum of the resistances of the individual components. Rs = R1 + R2 + R3
Ohm’s law;
Ohm’s law describes the relationship among voltage, resistance, and current in a resistive series circuit.
V = IR
V = Voltage I = Current R = resistant
(c)
Interpretation:
The relative error in the voltage reading if the internal resistance of the voltmeter was 1.00 Mχ should be calculated.
Concept introduction:
The percentage relative loading error of the voltmeter E r =
VM = Voltage of the meter
VX = True voltage of the source
When resistors are in series, a voltage divider. V = V1 + V2 + V3
The current in a series circuit is everywhere the same. In other words, I = I1 = I2 = I3
The total resistance Rs of a series circuit is equal to the sum of the resistances of the individual components. Rs = R1 + R2 + R3
Ohm’s law;
Ohm’s law describes the relationship among voltage, resistance, and current in a resistive series circuit.
V = IR
V = Voltage I = Current R = resistant

Trending nowThis is a popular solution!

Chapter 2 Solutions
Principles of Instrumental Analysis
- From this COZY spectrum, how do you know which protons are next to each other?arrow_forward5. A buffer consists of 0.45 M NH, and 0.25 M NH-CI (PK of NH 474) Calculate the pH of the butter. Ans: 9.52 BAS PH-9.26 +10g (10.95)) 14-4.59 PH=4.52 6. To 500 ml of the buffer on #5 a 0.20 g of sample of NaOH was added a Write the net ionic equation for the reaction which occurs b. Should the pH of the solution increase or decrease sightly? Calculate the pH of the buffer after the addition Ans: 9.54arrow_forwardExplain the inductive effect (+I and -I) in benzene derivatives.arrow_forward
- The inductive effect (+I and -I) in benzene derivatives, does it guide ortho, meta or para?arrow_forward19.57 Using one of the reactions in this chapter, give the correct starting material (A-L) needed to produce each structure (a-f). Name the type of reaction used. (b) ہ مرد (d) HO (c) དང་ ་་ཡིན་ད་དང་ (f) HO Br B D of oli H J Br K C 人 ↑arrow_forwardInductive effect (+I and -I) in benzene derivatives.arrow_forward
- Principles of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
