Concept explainers
(a)
Interpretation:
The capacitive reactance, the impedance and the phase angle
Concept introduction:
The capacitive reactance (Xc) is a property of a capacitor that is analogous to the resistance of a resistor.
C = capacitance
The impedance (Z) is given by following equation:
Xc = capacitive reactance
R = resistance
The phase angle (
Xc = capacitive reactance
R = resistance
Answer to Problem 2.18QAP
Explanation of Solution
Given information:
Frequency = 1 Hz
R = 30000 Ω
C = 0.033 µF
(b)
Interpretation:
The capacitive reactance, the impedance and the phase angle
Concept introduction:
The capacitive reactance (Xc) is a property of a capacitor that is analogous to the resistance of a resistor.
C = capacitance
The impedance (Z) is given by following equation:
Xc = capacitive reactance
R = resistance
The phase angle (
Xc = capacitive reactance
R = resistance
Answer to Problem 2.18QAP
Explanation of Solution
Given information:
Frequency = 103 Hz
R = 30000 Ω
C = 0.033 µF
(c)
Interpretation:
The capacitive reactance, the impedance and the phase angle
Concept introduction:
The capacitive reactance (Xc) is a property of a capacitor that is analogous to the resistance of a resistor.
C = capacitance
The impedance (Z) is given by following equation:
Xc = capacitive reactance
R = resistance
The phase angle (
Xc = capacitive reactance
R = resistance
Answer to Problem 2.18QAP
Explanation of Solution
Given information:
Frequency = 106 Hz
R = 30000 Ω
C = 0.0033 µF
(d)
Interpretation:
The capacitive reactance, the impedance and the phase angle
Concept introduction:
The capacitive reactance (Xc) is a property of a capacitor that is analogous to the resistance of a resistor.
C = capacitance
The impedance (Z) is given by following equation;
Xc = capacitive reactance
R = resistance
The phase angle (
Xc = capacitive reactance
R = resistance
Answer to Problem 2.18QAP
Explanation of Solution
Given information:
Frequency = 1Hz
R = 300 Ω
C = 0.0033 µF
(e)
Interpretation:
The capacitive reactance, the impedance and the phase angle
Concept introduction:
The capacitive reactance (Xc) is a property of a capacitor that is analogous to the resistance of a resistor.
C = capacitance
The impedance (Z) is given by following equation:
Xc = capacitive reactance
R = resistance
The phase angle (
Xc = capacitive reactance
R = resistance
Answer to Problem 2.18QAP
Explanation of Solution
Given information:
Frequency = 103 Hz
R = 300 Ω
C = 0.0033 µF
(f)
Interpretation:
The capacitive reactance, the impedance and the phase angle
Concept introduction:
The capacitive reactance (Xc) is a property of a capacitor that is analogous to the resistance of a resistor.
C = capacitance
The impedance (Z) is given by following equation;
Xc = capacitive reactance
R = resistance
The phase angle (
Xc = capacitive reactance
R = resistance
Answer to Problem 2.18QAP
Explanation of Solution
Given information:
Frequency = 106 Hz
R = 300 Ω
C = 0.0033 µF
(g)
Interpretation:
The capacitive reactance, the impedance and the phase angle
Concept introduction:
The capacitive reactance (Xc) is a property of a capacitor that is analogous to the resistance of a resistor.
C = capacitance
The impedance (Z) is given by following equation;
Xc = capacitive reactance
R = resistance
The phase angle (
Xc = capacitive reactance
R = resistance
Answer to Problem 2.18QAP
Explanation of Solution
Given information:
Frequency = 1 Hz
R = 3000 Ω
C = 0.33 µF
(h)
Interpretation:
The capacitive reactance, the impedance and the phase angle
Concept introduction:
The capacitive reactance (Xc) is a property of a capacitor that is analogous to the resistance of a resistor.
C = capacitance
The impedance (Z) is given by following equation:
Xc = capacitive reactance
R = resistance
The phase angle (
Xc = capacitive reactance
R = resistance
Answer to Problem 2.18QAP
Explanation of Solution
Given information:
Frequency = 1000 Hz
R = 3000 Ω
C = 0.33 µF
(i)
Interpretation:
The capacitive reactance, the impedance and the phase angle
Concept introduction:
The capacitive reactance (Xc) is a property of a capacitor that is analogous to the resistance of a resistor.
C = capacitance
The impedance (Z) is given by following equation:
Xc = capacitive reactance
R = resistance
The phase angle (
Xc = capacitive reactance
R = resistance
Answer to Problem 2.18QAP
Explanation of Solution
Given information:
Frequency = 106 Hz
R = 3000 Ω
C = 0.33 µF
Want to see more full solutions like this?
Chapter 2 Solutions
Principles of Instrumental Analysis
- Principles of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning