Principles of Instrumental Analysis
Principles of Instrumental Analysis
7th Edition
ISBN: 9781305577213
Author: Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher: Cengage Learning
Question
Book Icon
Chapter 2, Problem 2.16QAP
Interpretation Introduction

(a)

Interpretation:

Time constant for the circuit should be calculated.

Concept introduction:

The product of RC is referred to as time constant for the circuit and is a measure of the time required for a capacitor to charge or discharge.

Interpretation Introduction

(b)

Interpretation:

The current, voltage drops across the capacitor and the resistor during a charging cycle at given times should be calculated.

Concept introduction:

The product of RC is referred to as time constant for the circuit and is a measure of the time required for a capacitor to charge or discharge.

Ohm’s law:

Ohm’s law describes the relationship among voltage, resistance, and current in a resistive series circuit.

V = IR

Connection between initial current and current across the capacitor (i) at given time during the charging is given by

i = Iinte-t/RT

The value of the voltage across the capacitor (Vc) at given time during the charging period can be given like this:

Vc=Vs(1e(t/RC))

Vc = Voltage across the capacitor

Vs= Supply voltage

t = time

RC = time constant for RC circuit

Interpretation Introduction

(c)

Interpretation:

The current and voltage drops across the capacitor and the resistor during a discharging cycle at time 10 ms should be calculated.

Concept introduction:

The product of RC is referred to as time constant for the circuit and is a measure of the time required for a capacitor to charge or discharge.

Ohm’s law:

Ohm’s law describes the relationship among voltage, resistance, and current in a resistive series circuit.

V = IR

The value of the voltage across the capacitor (Vc) at given time during the charging period can be given like this:

Vc=Vse(t/RC)

Vc = Voltage across the capacitor

Vs= Supply voltage

t = time

RC = time constant for RC circuit

Connection between initial current and current across the capacitor (i) at given time during the discharging is given by

i = Iint(1-e-t/RT)

Blurred answer
Students have asked these similar questions
Don't used Ai solution
Don't used Ai solution
reaction scheme for C39H4202 Hydrogenation of Alkyne (Alkyne to Alkene) show reaction (drawing) please
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning