(a)
To determine: An explanation corresponding to the fact that the boiling points of N-Methylpyrrolidine and piperidine show large difference.
Interpretation: An explanation corresponding to the fact that the boiling points of N-Methylpyrrolidine and piperidine show large difference is to be explained.
Concept introduction: The important factors that affect the boiling points of organic compounds are hydrogen bonding, molecular weights, surface area and dipole moments. Boiling point of the compounds increases when the hydrogen bonding is present between them. Boiling point increases as the number of carbon atoms in the molecules increases.
(b)
To determine: An explanation corresponding to the fact that the two given oxygen containing isomers have a much larger boiling point difference than the two
Interpretation: An explanation corresponding to the fact that the two given oxygen containing isomers have a much larger boiling point difference than the two amine isomers is to explained.
Concept introduction: The important factors that affect the boiling points of organic compounds are hydrogen bonding, molecular weights, surface area and dipole moments. Boiling point of the compounds increases when the hydrogen bonding is present between them. Boiling point increases as the number of carbon atoms in the molecules increases.
(c)
To determine: An explanation corresponding to the fact that the given two nitrogen containing isomers have a much larger boiling point difference than the two amine isomers; also, the given two amides have higher boiling points than any of the other given four compounds.
Interpretation: An explanation corresponding to the fact that the given two nitrogen containing isomers have a much larger boiling point difference than the two amine isomers; also, the given two amides have higher boiling points than any of the other given four compounds is to be explained.
Concept introduction: The important factors that affect the boiling points of organic compounds are hydrogen bonding, molecular weights, surface area and dipole moments. Boiling point of the compounds increases when the hydrogen bonding is present between them. Boiling point increases as the number of carbon atoms in the molecules increases.
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
Organic Chemistry, Books a la Carte Edition (9th Edition)
- Nonearrow_forwardTransmitance 3. Which one of the following compounds corresponds to this IR spectrum? Point out the absorption band(s) that helped you decide. OH H3C OH H₂C CH3 H3C CH3 H3C INFRARED SPECTRUM 0.8- 0.6 0.4- 0.2 3000 2000 1000 Wavenumber (cm-1) 4. Consider this compound: H3C On the structure above, label the different types of H's as A, B, C, etc. In table form, list the labeled signals, and for each one state the number of hydrogens, their shifts, and the splitting you would observe for these hydrogens in the ¹H NMR spectrum. Label # of hydrogens splitting Shift (2)arrow_forwardNonearrow_forward
- Draw the Lewis structure of C2H4Oarrow_forwarda) 5. Circle all acidic (and anticoplanar to the Leaving group) protons in the following molecules, Solve these elimination reactions, and identify the major and minor products where appropriate: 20 points + NaOCH3 Br (2 productarrow_forwardNonearrow_forward
- Dr. Mendel asked his BIOL 260 class what their height was and what their parent's heights were. He plotted that data in the graph below to determine if height was a heritable trait. A. Is height a heritable trait? If yes, what is the heritability value? (2 pts) B. If the phenotypic variation is 30, what is the variation due to additive alleles? (2 pts) Offspring Height (Inches) 75 67.5 60 52.5 y = 0.9264x + 4.8519 55 60 65 MidParent Height (Inches) 70 75 12pt v V Paragraph B IUA > AT2 v Varrow_forwardExperiment: Each team will be provided with 5g of a mixture of acetanilide and salicylic acid. You will divide it into three 1.5 g portions in separate 125 mL Erlenmeyer flasks savıng some for melting point analysis. Dissolve the mixture in each flask in ~60mL of DI water by heating to boiling on a hotplate. Take the flasks off the hotplate once you have a clear solution and let them stand on the bench top for 5 mins and then allow them to cool as described below. Sample A-Let the first sample cool slowly to room temperature by letting it stand on your lab bench, with occasional stirring to promote crystallization. Sample B-Cool the second sample 1n a tap-water bath to 10-15 °C Sample C-Cool the third sample in an ice-bath to 0-2 °C Results: weight after recrystalization and melting point temp. A=0.624g,102-115° B=0.765g, 80-105° C=1.135g, 77-108 What is the percent yield of A,B, and C.arrow_forwardRel. Intensity Q 1. Which one of the following is true of the compound whose mass spectrum is shown here? Explain how you decided. 100 a) It contains chlorine. b) It contains bromine. c) It contains neither chlorine nor bromine. 80- 60- 40- 20- 0.0 0.0 TT 40 80 120 160 m/z 2. Using the Table of IR Absorptions how could you distinguish between these two compounds in the IR? What absorbance would one compound have that the other compound does not? HO CIarrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning