
Concept explainers
Interpretation:
Molecular geometry and electron geometry about each non-hydrogen atom in the given molecule is to be predicted using VSEPR theory.
Concept introduction:
Electron geometry and molecular geometry of molecules are determined by using Valence shell electron pair repulsion (VSEPR) theory. According to VSEPR theory, electron geometry describes the orientation of the electron groups about a particular atom and molecular geometry describes the arrangement of atoms about a particular atom.
The number of electron pairs describes the electron and molecular geometry. If all the electron pairs are bonds, then the molecular geometry is the same as the electron geometry. Electron geometry is different from molecular geometry if some electron groups are present as lone pairs. The bond angle depends on the electron geometry around the atom.
Electron geometry and molecular geometry from the number of electron pairs and bond angle according to VSEPR theory are as follows:
Number of Electron Groups |
Number of Bonds |
Number of Lone Pairs |
Bond Angle (o) |
Electron Geometry | Molecular Geometry |
2 | 2 | 0 | 180 | Linear | Linear |
3 | 3 | 0 | 120 | Trigonal planar | Trigonal planer |
3 | 2 | 1 | 120 | Trigonal planar | Bent |
4 | 4 | 0 | 109.5 | Tetrahedral | Tetrahedral |
4 | 4 | 0 | 180 | Linear | Linear |
4 | 2 | 2 | 109.5 | Tetrahedral | Bent |

Answer to Problem 2.2P
According to VSEPR theory, the electron and molecular geometry about each of the non-hydrogen atom in the structure is as follows:
Oxygen = Electron geometry is tetrahedral while molecular geometry is bent.
C1 carbon atom = Electron geometry is tetrahedral while molecular geometry is also tetrahedral.
C2 and C3 carbon atoms = Electron geometry is linear while molecular geometry is also linear.
Explanation of Solution
The given structure for
The structure showing all the atoms and lone pairs is:
There are four non-hydrogen atoms in the above structure. They are numbered from 1 to 4.
There are four groups of electrons around the oxygen atom: two lone pairs of electrons and two single bonds. According to VSEPR theory, its electron geometry is tetrahedral, and its molecular geometry is bent.
There are four groups of electrons around the C1 carbon: four single bonds and no lone pairs of electrons. According to VSEPR theory, its electron geometry is tetrahedral, and its molecular geometry is also tetrahedral.
There are two groups of electrons around the C2 carbon: one triple bond, and one single bond, and no lone pairs of electrons. According to VSEPR theory, its electron geometry is linear, and its molecular geometry is also linear.
There are two groups of electrons around the C3 carbon: one triple bond, one single bond, and no lone pairs of electrons. According to VSEPR theory, its electron geometry is linear, and its molecular geometry is also linear.
The electron geometry and molecular geometry about each non-hydrogen atom in the given molecule is predicted on the basis of VSEPR chart.
Want to see more full solutions like this?
Chapter 2 Solutions
Organic Chemistry: Principles And Mechanisms (second Edition)
- can someone draw out the reaction mechanism for this reaction showing all the curly arrows and 2. Draw the GPNA molecule and identify the phenylalanine portion. 3. Draw L-phenylalanine with the correct stereochemistryarrow_forwardWhat is the reaction mechanism for this?arrow_forwardPredict the major products of both organic reactions. Be sure to use wedge and dash bonds to show the stereochemistry of the products when it's important, for example to distinguish between two different major products. esc esc Explanation Check 2 : + + X H₁₂O + Х ง WW E R Y qab Ccaps lock shift $ P X Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibility Bil T FR F18 9 G t K L Z X V B N M control opption command command T C darrow_forward
- Draw the Markovnikov product of the hydrohalogenation of this alkene. this problem. Note for advanced students: draw only one product, and don't worry about showing any stereochemistry. Drawing dash and wedge bonds has been disabled for caps lock Explanation Check 2 W E R + X 5 HCI Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibility Bil Y F G H K L ZZ X C V B N M control opption command F10 F10 command 4 BA Ar Carrow_forwardI don't understand why the amide on the top left, with the R attached to one side, doesn't get substituted with OH to form a carboxylic acid. And if only one can be substituted, why did it choose the amide it chose rather than the other amide?arrow_forwardesc Draw the Markovnikov product of the hydration of this alkene. Note for advanced students: draw only one product, and don't worry about showing any stereochemistry. Drawing dash and wedge bonds has been disabled for this problem. Explanation Check BBB + X 0 1. Hg (OAc)2, H₂O 2. Na BH 5 Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibility Bl P 豆 28 2 28 N 9 W E R T Y A S aps lock G H K L Z X C V B N M T central H command #e commandarrow_forward
- C A student proposes the transformation below in one step of an organic synthesis. There may be one or more products missing from the right-hand side, but there are no reagents missing from the left-hand side. There may also be catalysts, small inorganic reagents, and other important reaction conditions missing from the arrow. • Is the student's transformation possible? If not, check the box under the drawing area. . If the student's transformation is possible, then complete the reaction by adding any missing products to the right-hand side, and adding required catalysts, inorganic reagents, or other important reaction conditions above and below the arrow. • You do not need to balance the reaction, but be sure every important organic reactant or product is shown. (X) This transformation can't be done in one step. + Tarrow_forwardく Predict the major products of this organic reaction. If there aren't any products, because nothing will happen, check the box under the drawing area instead. No reaction. Explanation Check OH + + ✓ 2 H₂SO 4 O xs H₂O 2 Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Centerarrow_forwardDraw the skeletal ("line") structure of 1,3-dihydroxy-2-pentanone. Click and drag to start drawing a structure. X Parrow_forward
- Predicting edict the major products of this organic reaction. If there aren't any products, because nothing will happen, check the box under the drawing area instead. + No reaction. Explanation Check HO Na O H xs H₂O 2 Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center Iarrow_forwardChoosing reagents and conditions for acetal formation or hydrolysis 0/5 A student proposes the transformation below in one step of an organic synthesis. There may be one or more products missing from the right-hand side, but there are no reagents missing from the left-hand side. There may also be catalysts, small inorganic reagents, and other important reaction conditions missing from the arrow. • Is the student's transformation possible? If not, check the box under the drawing area. If the student's transformation is possible, then complete the reaction by adding any missing products to the right-hand side, and adding required catalysts, inorganic reagents, or other important reaction conditions above and below the arrow. • You do not need to balance the reaction, but be sure every important organic reactant or product is shown. + This transformation can't be done in one step. 5 I H Autumn alo 值 Ar Barrow_forwardA block of copper of mass 2.00kg(cp = 0.3851 .K) and g temperature 0°C is introduced into an insulated container in which there is 1.00molH, O(g) at 100°C and 1.00 2 atm. Note that C P = 4.184. K for liquid water, and g that A H = 2260 for water. vap g Assuming all the steam is condensed to water, and that the pressure remains constant: (a) What will be the final temperature of the system? (b) What is the heat transferred from the water to the copper? (c) What is the entropy change of the water, the copper, and the total system?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





