A certain town with a population of 100.000 has 3 newspapers: I, II, and Ill. The proportions of townspeople who read these papers are as follows: I: 10 percent I and II: 8 percent I and II and III: 1 percent II: 30 percent I and III: 2 percent III: 5 percent II and III: 4 percent (The list tells us, for instance, that 8000 people read newspapers I and II.) a. Find the number of people who read only one newspaper. b. How many people read at least two newspapers? c. If I and III are morning papers and II is an evening paper, how many people read at least one morning paper plus an evening paper? d. How many people do not read any newspapers? e. How many people read only one morning paper and one evening paper?
A certain town with a population of 100.000 has 3 newspapers: I, II, and Ill. The proportions of townspeople who read these papers are as follows: I: 10 percent I and II: 8 percent I and II and III: 1 percent II: 30 percent I and III: 2 percent III: 5 percent II and III: 4 percent (The list tells us, for instance, that 8000 people read newspapers I and II.) a. Find the number of people who read only one newspaper. b. How many people read at least two newspapers? c. If I and III are morning papers and II is an evening paper, how many people read at least one morning paper plus an evening paper? d. How many people do not read any newspapers? e. How many people read only one morning paper and one evening paper?
Q3 (8 points)
Q3. A survey classified a large number of adults according to whether they were diag-
nosed as needing eyeglasses to correct their reading vision and whether they use
eyeglasses when reading. The proportions falling into the four resulting categories
are given in the following table:
Use Eyeglasses for Reading
Needs glasses Yes
No
Yes
0.44
0.14
No
0.02
0.40
If a single adult is selected from the large group, find the probabilities of the events
defined below. The adult
(a) needs glasses.
(b) needs glasses but does not use them.
(c) uses glasses whether the glasses are needed or not.
4. (i) Let a discrete sample space be given by
N = {W1, W2, W3, W4},
and let a probability measure P on be given by
P(w1) = 0.2, P(w2) = 0.2, P(w3) = 0.5, P(wa) = 0.1.
Consider the random variables X1, X2 → R defined by
X₁(w1) = 1, X₁(w2) = 2,
X2(w1) = 2, X2 (w2) = 2,
Find the joint distribution of X1, X2.
(ii)
X1(W3) = 1, X₁(w4) = 1,
X2(W3) = 1, X2(w4) = 2.
[4 Marks]
Let Y, Z be random variables on a probability space (, F, P).
Let the random vector (Y, Z) take on values in the set [0, 1] x [0,2] and let the
joint distribution of Y, Z on [0, 1] x [0,2] be given by
1
dPy,z (y, z) ==(y²z+yz2) dy dz.
harks 12 Find the distribution Py of the random variable Y.
[8 Marks]
marks 11
3
3/4 x 1/4
1.
There are 4 balls in an urn, of which 3 balls are white and 1 ball is
black. You do the following:
draw a ball from the urn at random, note its colour, do not return the
ball to the urn;
draw a second ball, note its colour, return the ball to the urn;
finally draw a third ball and note its colour.
(i) Describe the corresponding discrete probability space
(Q, F, P).
[9 Marks]
(ii)
Consider the following event,
A: Among the first and the third balls, one ball is white, the other is black.
Write down A as a subset of the sample space and find its probability, P(A).
[2 Marks]
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, probability and related others by exploring similar questions and additional content below.
Compound Interest Formula Explained, Investment, Monthly & Continuously, Word Problems, Algebra; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=P182Abv3fOk;License: Standard YouTube License, CC-BY
Applications of Algebra (Digit, Age, Work, Clock, Mixture and Rate Problems); Author: EngineerProf PH;https://www.youtube.com/watch?v=Y8aJ_wYCS2g;License: Standard YouTube License, CC-BY