(a)
Interpretation:
The coloured boxes that represent four non-metal elements are to be identified.
Concept introduction:
The periodic table is an arrangement of elements according to their properties,
The characteristic properties of non-metals are as follows:
1. Non-metals, unlike metals, can be solid, liquid or gas.
2. Non-metal oxides are acidic in nature.
3. Non-metals are poor conductors of heat and electricity.
4. Non-metals have a tendency to gain electrons to form anions.
5. Non-metals are non-malleable.
6. Non-metals are not ductile.
7. Non-metals do not exhibit sonority.
(b)
Interpretation:
The coloured boxes that represent two metal elements are to be identified.
Concept introduction:
The periodic table is an arrangement of elements according to their properties, atomic number, and electronic configurations.
The characteristic properties of metals are as follows:
1. Metals are hard and shiny in appearance. Except for mercury, all metals are solid.
2. Metallic oxides are basic in nature.
3. Metals are good conductors of heat and electricity
4. Metals have a tendency to lose electrons to form cations.
5. Metals are malleable. They can be beaten into thin sheets
6. Metals are ductile. They can be drawn into wires.
7. Metals exhibit sonority.
(c)
Interpretation:
The coloured boxes that represent three elements that are gaseous at room temperature are to be identified.
Concept introduction:
A periodic table is an arrangement of elements based on their atomic number, properties and electronic configuration. The table is arranged into groups and periods. The elements which are metallic in nature, occupy the large lower-left portion of the table. The non-metals occupy the small upper-right portion of the table. Metalloids like along the staircase line. Elements which appear in the same group have similar behaviour.
(d)
Interpretation:
The coloured boxes that represent three elements that are solid at room temperature are to be identified.
Concept introduction:
A periodic table is an arrangement of elements based on their atomic number, properties and electronic configuration. The table is arranged into groups and periods. The elements which are metallic in nature, occupy the large lower-left portion of the table. The non-metals occupy the small upper-right portion of the table. Metalloids like along the staircase line. Elements which appear in the same group have similar behaviour.
(e)
Interpretation:
A pair of elements that will form a covalent compound is to be determined.
Concept introduction:
Covalent compounds are formed by the interaction of two or more non-metal elements. In covalent compounds, the covalent bonds are formed by the sharing of electrons between the atoms instead of their transfer from one atom to another.
(f)
Interpretation:
Another pair of elements that will likely form covalent compounds is to be determined.
Concept introduction:
Covalent compounds are formed by the interaction of two or more non-metal elements. In covalent compounds, the covalent bonds are formed by the sharing of electrons between the atoms instead of their transfer from one atom to another.
(g)
Interpretation:
The coloured boxes that represent a pair of elements that will likely form an ionic compound with the formula
Concept introduction:
Ionic compounds are formed by the interaction of metal elements with non-metal elements. In an ionic bond formation, there is a transfer of electrons between atoms. The metal elements have a tendency to lose electrons in order to gain stability, whereas non-metals acquire stability by gaining the electrons. The ions thus formed attract each other due to strong electrostatic force between them to form ionic compounds.
(h)
Interpretation:
The coloured boxes that represent another pair of elements that will likely form an ionic compound with the formula
Concept introduction:
Ionic compounds are formed by the interaction of metal elements with non-metal elements. In an ionic bond formation, there is a transfer of electrons between atoms. The metal elements have a tendency to lose electrons in order to gain stability, whereas non-metals acquire stability by gaining the electrons. The ions thus formed attract each other due to strong electrostatic force between them to form ionic compounds.
(i)
Interpretation:
The coloured boxes that represent a pair of elements that will likely form an ionic compound with the formula
Concept introduction:
Ionic compounds are formed by the interaction of metal elements with non-metal elements. In an ionic bond formation, there is a transfer of electrons between atoms. The metal elements have a tendency to lose electrons in order to gain stability, whereas non-metals acquire stability by gaining the electrons. The ions thus formed attract each other due to strong electrostatic force between them to form ionic compounds.
(j)
Interpretation:
The coloured boxes that represent a pair of elements that will likely form an ionic compound with the formula
Concept introduction:
Ionic compounds are formed by the interaction of metal elements with non-metal elements. In an ionic bond formation, there is a transfer of electrons between atoms. The metal elements have a tendency to lose electrons in order to gain stability, whereas non-metals acquire stability by gaining the electrons. The ions thus formed attract each other due to strong electrostatic force between them to form ionic compounds.
(k)
Interpretation:
The coloured box that represents an element that forms no compound is to be determined.
Concept introduction:
A periodic table is an arrangement of elements based on their atomic number, properties and electronic configuration. The table is arranged into groups and periods. The elements which are metallic in nature, occupy the large lower-left portion of the table. The non-metals occupy the small upper-right portion of the table. Metalloids like along the staircase line. Elements which appear in the same group have similar behaviour.
(l)
Interpretation:
The coloured boxes that represent a pair of elements whose compounds exhibit the law of multiple proportions are to be determined.
Concept introduction:
Law of multiple proportions states that, if two elements can combine to form more than one compound, the masses of one element that combines with a fixed mass of the other element are in the ratio of small whole numbers.
![Check Mark](/static/check-mark.png)
Trending nowThis is a popular solution!
![Blurred answer](/static/blurred-answer.jpg)
Chapter 2 Solutions
CHEMISTRY: MOLECULAR...(LL) W/ALEKS
- solve pleasearrow_forwardPlease answer the question and provide a detailed drawing of the structure. If there will not be a new C – C bond, then the box under the drawing area will be checked. Will the following reaction make a molecule with a new C – C bond as its major product: Draw the major organic product or products, if the reaction will work. Be sure you use wedge and dash bonds if necessary, for example to distinguish between major products with different stereochemistry.arrow_forwardPlease do not use AI. AI cannot "see" the molecules properly, and it therefore gives the wrong answer while giving incorrect descriptions of the visual images we're looking at. All of these compounds would be produced (I think). In my book, I don't see any rules about yield in this case, like explaining that one product would be present in less yield for this reason or that reason. Please explain why some of these produce less yield than others.arrow_forward
- Please answer the question and provide detailed explanations.arrow_forwardAll of these compounds would be produced (I think). In my book, I don't see any rules about yield in this case, like explaining that one product would be present in less yield for this reason or that reason. Please explain why some of these produce less yield than others.arrow_forward5. Fill in the missing molecules in the following reaction pathway. TMSO Heat + CI then HF O₂N (1.0 equiv) AICI 3 OMearrow_forward
- e. O₂N NO2 1. excess H2, Pd/C 2. excess NaNO2, HCI 3. excess CuCNarrow_forwardHelp with a periodic table task.' Procedure Part 1: Customizing a Periodic Table Use a textbook or other valid source to determine which elements are metals, nonmetals, metalloids (called semimetals in some texts), alkali metals, alkaline earth metals, transition metals, halogens, and noble gases. Download and print a copy of the Periodic Table of Elements. Use colored pencils, colorful highlighters, or computer drawing tools to devise a schematic for designating each of the following on the periodic table: Group numbers Period number Labels for these groups: alkali metals, alkaline earth metals, transition metals, inner transition metals (lanthanides and actinides), other metals, metalloids (semimetals), other nonmetals, halogens, and noble gases Metals, nonmetals, and metalloids Note: Write the group and period numbers and color/highlight each element for categorization. Be sure to include a key for the schematic. Take a photo of the completed periodic table and upload the…arrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- Can you explain these two problems for mearrow_forward个 ^ Blackboard x Organic Chemistry II Lecture (m x Aktiv Learning App x → C app.aktiv.com ← Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. Problem 28 of 35 :OH H HH KO Select to Edit Arrows CH CH₂OK, CH CH2OH 5+ H :0: Donearrow_forwardCan you explain those two problems for me please.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)