FUND OF AERODYNAMICS--CONNECT (360 DAYS)
FUND OF AERODYNAMICS--CONNECT (360 DAYS)
6th Edition
ISBN: 9781266911842
Author: Anderson
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 2, Problem 2.11P

Assuming the velocity field given in Problem 2.6 pertains to an incompressible flow, calculate the stream function and velocity potential. Using your results, show that lines of constant ϕ are perpendicular to lines of constant ψ .

Expert Solution & Answer
Check Mark
To determine

To find:

The stream function and velocity potential for the given velocity functions and to prove it’s perpendicularity.

Answer to Problem 2.11P

Equation of the velocity potential is ϕ=c2(x2y2).

Equation of the stream function is ψ=cxy+d.

Explanation of Solution

Given:

The horizontal and vertical velocity component of velocity is given as below ( problem 2.6).

u=cx....................(1)v=cy.................(2)

Stream function and velocity potential has to be found and prove perpendicularity of the stream function and velocity potential.

Stream function:

The equation of the stream function is given as follows:

u=ψyandv=ψxPut the value of the u:ψy=cxψ=cxyIntegrating both sides,ψ=cxyψ=cxy+f(x)...............................(3)Where f(x) is the integration constant.Differentiate equation (3) with respect to x.ψ=cxy+f(x)x(ψ)=x(cxy)+f'(x)ψx=cy+f'(x)Put the vaue of the ψx=cy.cy=cy+f'(x)f'(x)=0f(x)=dPut the value of the f(x) in equation 1.ψ=cxy+0ψ=cxy+d.........................(4)answerWhere d is constant.

Equation of the stream function is ψ=cxy+d

Velocity potential:

The equation of the velocity potential is given as follows:

u=ϕxandv=ϕyPut the value of the u.ϕx=cxϕ=cxxIntegrating both sides,ϕ=cxxϕ=cx22+f(y)...............................(5)Where f(y) is the integration constant.Differentiate equation (1) 1 with respect to y.ϕ=cx22+f(y)y(ϕ)=y(cx22)+f'(y)ϕy=0+f'(y)Put the vaue of the ϕy=cy.f'(y)=cyf(y)=cy22Put the value of the f(y) in equation 2.ϕ=cx22cy22ϕ=c2(x2y2).........................(6)answer

Equation of the stream function is ϕ=c2(x2y2).

Proof of the perpendicularity:

Differentiate equation (2) and (3) with respect to x keeping φ and ψ constant.

ψ=cxyddx(ψ)=c(xdydx+y)0=xdydx+ydydx=yx..............................(7)

Similarly,

dϕdx=c2(2x2ydydx)0=c2(2x2ydydx)2x2ydydx=0dydx=xy..............................(8)

Compare equations 7 and 9.

(dydx)at constant ϕ=1(dydx)at constant ψ

Hence,the stream function and velocity potential are perpendicular to each other.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Qu. 5 Composite materials are becoming more widely used in aircraft industry due to their high strength, low weight and excellent corrosion resistant properties. As an engineer who is given task to design the I beam section of an aircraft (see Figure 7) please, answer the following questions given the material properties in Table 3. Determine the Moduli of Elasticity of Carbon/Epoxy, Aramid/Epoxy, and Boron /Epoxy composites in the longitudinal direction, given that the composites consist of 25 vol% epoxy and 75 vol% fiber. What are the specific moduli of each of these composites? What are the specific strengths (i.e. specific UTS) of each of these composites? What is the final cost of each of these composites?please show all work step by step problems make sure to see formula material science
Mueh Battery operated train Coll 160,000kg 0.0005 0.15 5m² 1.2kg/m³ CD Af Pair 19 пре neng 0.98 0.9 0.88 Tesla Prated Tesla Trated "wheel ng Joxle 270 kW 440NM 0,45m 20 8.5kg m2 the middle Consider a drive cycle of a 500km trip with 3 stops in Other than the acceleration and deceleration associated with the three stops, the tran maintains constat cruise speed velocity of 324 km/hr. The tran will fast charge at each stop for 15 min at a rate Peharge = 350 kW ΟΙ 15MIN Stop w charging (350kW) (ผม τ (AN GMIJ t 6M 1) HOW MUCH DISTANCE dace is covered DURING THE ACCELERATION TO 324 km/hr? 2) DETERMINE HOW LONG (IN seconds) the tran will BE TRAVELING AT FULL SPEED 2 ? 3) CALCULATE THE NET ENERGY GAW PER STOP ete
Please stop screenshoting ai solution,it always in accurate solve normal
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Introduction to Kinematics; Author: LearnChemE;https://www.youtube.com/watch?v=bV0XPz-mg2s;License: Standard youtube license