Concept explainers
(a)
Interpretation:
The separation method used when a mixture of cooked pasta and boiling water in poured into a colander is to be identified.
Concept introduction:
The basic techniques of separation of mixture components are:
Filtration - The method of filtration is used to separate the components of a mixture whose particle sizes are different. Filtration is also used to separate solids from liquids using sieve plates.
Crystallization - The method of crystallization involves the separation of components from a mixture in which the components have a difference in their solubility in a particular solvent. On cooling down the solution, the desired component crystallizes out of the solution.
Distillation - This method involves heating and cooling the mixture with components having large differences in their boiling points. The component with lower boiling point vapourises first. The component vapours are cooled down and collected in separate containers.
Chromatography - This separation technique is based on the difference between the solubilities of the components of a mixture in mobile and stationary phases. The component having greater solubility in the mobile phase is separated and collected first whereas the component with greater solubility in the stationary phase is separated later.
(b)
Interpretation:
The separation method used when coloured impurities from raw sugar are removed to make refined sugar is to be identified.
Concept introduction:
The basic techniques of separation of mixture components are:
Filtration - The method of filtration is used to separate the components of a mixture whose particle sizes are different. Filtration is also used to separate solids from liquids using sieve plates.
Crystallization - The method of crystallization involves the separation of components from a mixture in which the components have a difference in their solubility in a particular solvent. On cooling down the solution, the desired component crystallizes out of the solution.
Distillation - This method involves heating and cooling the mixture with components having large differences in their boiling points. The component with lower boiling point vapourises first. The component vapours are cooled down and collected in separate containers.
Chromatography - This separation technique is based on the difference between the solubilities of the components of a mixture in mobile and stationary phases. The component having greater solubility in the mobile phase is separated and collected first whereas the component with greater solubility in the stationary phase is separated later.

Want to see the full answer?
Check out a sample textbook solution
Chapter 2 Solutions
CHEMISTRY: MOLECULAR NATURE ALEKS ACCESS
- solve pleasearrow_forwardPlease answer the question and provide a detailed drawing of the structure. If there will not be a new C – C bond, then the box under the drawing area will be checked. Will the following reaction make a molecule with a new C – C bond as its major product: Draw the major organic product or products, if the reaction will work. Be sure you use wedge and dash bonds if necessary, for example to distinguish between major products with different stereochemistry.arrow_forwardPlease do not use AI. AI cannot "see" the molecules properly, and it therefore gives the wrong answer while giving incorrect descriptions of the visual images we're looking at. All of these compounds would be produced (I think). In my book, I don't see any rules about yield in this case, like explaining that one product would be present in less yield for this reason or that reason. Please explain why some of these produce less yield than others.arrow_forward
- Please answer the question and provide detailed explanations.arrow_forwardAll of these compounds would be produced (I think). In my book, I don't see any rules about yield in this case, like explaining that one product would be present in less yield for this reason or that reason. Please explain why some of these produce less yield than others.arrow_forward5. Fill in the missing molecules in the following reaction pathway. TMSO Heat + CI then HF O₂N (1.0 equiv) AICI 3 OMearrow_forward
- e. O₂N NO2 1. excess H2, Pd/C 2. excess NaNO2, HCI 3. excess CuCNarrow_forwardHelp with a periodic table task.' Procedure Part 1: Customizing a Periodic Table Use a textbook or other valid source to determine which elements are metals, nonmetals, metalloids (called semimetals in some texts), alkali metals, alkaline earth metals, transition metals, halogens, and noble gases. Download and print a copy of the Periodic Table of Elements. Use colored pencils, colorful highlighters, or computer drawing tools to devise a schematic for designating each of the following on the periodic table: Group numbers Period number Labels for these groups: alkali metals, alkaline earth metals, transition metals, inner transition metals (lanthanides and actinides), other metals, metalloids (semimetals), other nonmetals, halogens, and noble gases Metals, nonmetals, and metalloids Note: Write the group and period numbers and color/highlight each element for categorization. Be sure to include a key for the schematic. Take a photo of the completed periodic table and upload the…arrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- Can you explain these two problems for mearrow_forward个 ^ Blackboard x Organic Chemistry II Lecture (m x Aktiv Learning App x → C app.aktiv.com ← Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. Problem 28 of 35 :OH H HH KO Select to Edit Arrows CH CH₂OK, CH CH2OH 5+ H :0: Donearrow_forwardCan you explain those two problems for me please.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





