(a)
Interpretation:
The systematic name for blue vitriol
Concept introduction:
The general rules for writing the systematic names of ionic compounds are as follows:
1) In binary ionic compounds, the name of the metal is written as the original name whereas the name of the non-metal has the root word with the suffix
2) In metals that form more than one ion, the Latin root of the metal is followed by a suffix
3) In the family of two oxoanions, the ion with more oxygen atoms has the non-metal root and a suffix
4) For hydrated ionic compounds, the total number of water molecules are represented by the Greek numerical prefixes followed by the word hydrate.
(a)

Answer to Problem 2.110P
The systematic name for the compound
Explanation of Solution
The anion sulfate is a polyatomic anion and the charge on the sulfate ion is
The systematic name for the compound
(b)
Interpretation:
The systematic name for slaked lime
Concept introduction:
The general rules for writing the systematic names of ionic compounds are as follows:
1) In binary ionic compounds, the name of the metal is written as the original name whereas the name of the non-metal has the root word with the suffix
2) In metals that form more than one ion, the Latin root of the metal is followed by a suffix
3) In the family of two oxoanions, the ion with more oxygen atoms has the non-metal root and a suffix
4) For hydrated ionic compounds, the total number of water molecules are represented by the Greek numerical prefixes followed by the word hydrate.
(b)

Answer to Problem 2.110P
The systematic name for the compound
Explanation of Solution
The systematic name for the compound
(c)
Interpretation:
The systematic name for oil of vitriol
Concept introduction:
The general rules for naming oxoacids are as follows:
1) The suffix
2) The suffix
(c)

Answer to Problem 2.110P
The systematic name for oil of vitriol
Explanation of Solution
The systematic name for oil of vitriol
(d)
Interpretation:
The systematic name for washing soda
Concept introduction:
The general rules for writing the systematic names of ionic compounds are as follows:
1) In binary ionic compounds, the name of the metal is written as the original name whereas the name of the non-metal has the root word with the suffix
2) In metals that form more than one ion, the Latin root of the metal is followed by a suffix
3) In the family of two oxoanions, the ion with more oxygen atoms has the non-metal root and a suffix
4) For hydrated ionic compounds, the total number of water molecules are represented by the Greek numerical prefixes followed by the word hydrate.
(d)

Answer to Problem 2.110P
The systematic name for washing soda
Explanation of Solution
The systematic name for washing soda
(e)
Interpretation:
The systematic name for muriatic acid
Concept introduction:
The general formula to name binary acids is,
(e)

Answer to Problem 2.110P
The systematic name for muriatic acid
Explanation of Solution
The non-metal anion chloride has the root word chlor.
Substitute chlor for the non-metal root in equation (1).
Thus the name of the compound
The systematic name for muriatic acid
(f)
Interpretation:
The systematic name for Epsom salt
Concept introduction:
The general rules for writing the systematic names of ionic compounds are as follows:
1) In binary ionic compounds, the name of the metal is written as the original name whereas the name of the non-metal has the root word with the suffix
2) In metals that form more than one ion, the Latin root of the metal is followed by a suffix
3) In the family of two oxoanions, the ion with more oxygen atoms has the non-metal root and a suffix
4) For hydrated ionic compounds, the total number of water molecules are represented by the Greek numerical prefixes followed by the word hydrate.
(f)

Answer to Problem 2.110P
The systematic name for Epsom salt
Explanation of Solution
The symbol
The systematic name for Epsom salt
(g)
Interpretation:
The systematic name for chalk
Concept introduction:
The general rules for writing the systematic names of ionic compounds are as follows:
1) In binary ionic compounds, the name of the metal is written as the original name whereas the name of the non-metal has the root word with the suffix
2) In metals that form more than one ion, the Latin root of the metal is followed by a suffix
3) In the family of two oxoanions, the ion with more oxygen atoms has the non-metal root and a suffix
4) For hydrated ionic compounds, the total number of water molecules are represented by the Greek numerical prefixes followed by the word hydrate.
(g)

Answer to Problem 2.110P
The systematic name for chalk
Explanation of Solution
The symbol
The systematic name for chalk
(h)
Interpretation:
The systematic name for dry ice
Concept introduction:
The general rules for writing the systematic names for covalent compounds are as follows:
1) The element with the lower group number is named first in the systematic name. The element present in the higher group number is named second. While naming the element in the higher group number, the suffix
2) If both the elements belong to the same group, the element present in the higher period number is named first.
3) To indicate the total number of atoms of each element in the compound, the Greek numerical prefixes are used. For the element named first in the systematic name, the Greek numerical prefix is used only when more than one atoms of the element are present in the compound.
(h)

Answer to Problem 2.110P
The systematic name for dry ice
Explanation of Solution
The symbol
The systematic name for dry ice
(i)
Interpretation:
The systematic name for baking soda
Concept introduction:
The general rules for writing the systematic names of ionic compounds are as follows:
1) In binary ionic compounds, the name of the metal is written as the original name whereas the name of the non-metal has the root word with the suffix
2) In metals that form more than one ion, the Latin root of the metal is followed by a suffix
3) In the family of two oxoanions, the ion with more oxygen atoms has the non-metal root and a suffix
4) For hydrated ionic compounds, the total number of water molecules are represented by the Greek numerical prefixes followed by the word hydrate.
(i)

Answer to Problem 2.110P
The systematic name for baking soda
Explanation of Solution
The systematic name for baking soda
(j)
Interpretation:
The systematic name for lye
Concept introduction:
The general rules for writing the systematic names of ionic compounds are as follows:
1) In binary ionic compounds, the name of the metal is written as the original name whereas the name of the non-metal has the root word with the suffix
2) In metals that form more than one ion, the Latin root of the metal is followed by a suffix
3) In the family of two oxoanions, the ion with more oxygen atoms has the non-metal root and a suffix
4) For hydrated ionic compounds, the total number of water molecules are represented by the Greek numerical prefixes followed by the word hydrate.
(j)

Answer to Problem 2.110P
The systematic name for lye
Explanation of Solution
The systematic name for lye
Want to see more full solutions like this?
Chapter 2 Solutions
CHEMISTRY(LOOSELEAF) W/CONNECT+EBOOK
- Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. H H CH3OH, H+ H Select to Add Arrows H° 0:0 'H + Q HH ■ Select to Add Arrows CH3OH, H* H. H CH3OH, H+ HH ■ Select to Add Arrows i Please select a drawing or reagent from the question areaarrow_forwardWhat are examples of analytical methods that can be used to analyse salt in tomato sauce?arrow_forwardA common alkene starting material is shown below. Predict the major product for each reaction. Use a dash or wedge bond to indicate the relative stereochemistry of substituents on asymmetric centers, where applicable. Ignore any inorganic byproducts H Šali OH H OH Select to Edit Select to Draw 1. BH3-THF 1. Hg(OAc)2, H2O =U= 2. H2O2, NaOH 2. NaBH4, NaOH + Please select a drawing or reagent from the question areaarrow_forward
- What is the MOHR titration & AOAC method? What is it and how does it work? How can it be used to quantify salt in a sample?arrow_forwardPredict the major products of this reaction. Cl₂ hv ? Draw only the major product or products in the drawing area below. If there's more than one major product, you can draw them in any arrangement you like. Be sure you use wedge and dash bonds if necessary, for example to distinguish between major products with different stereochemistry. If there will be no products because there will be no significant reaction, just check the box under the drawing area and leave it blank. Note for advanced students: you can ignore any products of repeated addition. Explanation Check Click and drag to start drawing a structure. 80 10 m 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibility DII A F1 F2 F3 F4 F5 F6 F7 F8 EO F11arrow_forwardGiven a system with an anodic overpotential, the variation of η as a function of current density- at low fields is linear.- at higher fields, it follows Tafel's law.Calculate the range of current densities for which the overpotential has the same value when calculated for both cases (the maximum relative difference will be 5%, compared to the behavior for higher fields).arrow_forward
- Using reaction free energy to predict equilibrium composition Consider the following equilibrium: N2 (g) + 3H2 (g) = 2NH3 (g) AGº = -34. KJ Now suppose a reaction vessel is filled with 8.06 atm of nitrogen (N2) and 2.58 atm of ammonia (NH3) at 106. °C. Answer the following questions about this system: rise Under these conditions, will the pressure of N2 tend to rise or fall? ☐ x10 fall Is it possible to reverse this tendency by adding H₂? In other words, if you said the pressure of N2 will tend to rise, can that be changed to a tendency to fall by adding H2? Similarly, if you said the pressure of N will tend to fall, can that be changed to a tendency to rise by adding H₂? If you said the tendency can be reversed in the second question, calculate the minimum pressure of H₂ needed to reverse it. Round your answer to 2 significant digits. yes no ☐ atm Х ด ? olo 18 Ararrow_forwardFour liters of an aqueous solution containing 6.98 mg of acetic acid were prepared. At 25°C, the measured conductivity was 5.89x10-3 mS cm-1. Calculate the degree of dissociation of the acid and its ionization constant.Molecular weights: O (15.999), C (12.011), H (1.008).Limiting molar ionic conductivities (λ+0 and λ-0) of Ac-(aq) and H+(aq): 40.9 and 349.8 S cm-2 mol-1.arrow_forwardDetermine the change in Gibbs energy, entropy, and enthalpy at 25°C for the battery from which the data in the table were obtained.T (°C) 15 20 25 30 35Eo (mV) 227.13 224.38 221.87 219.37 216.59Data: n = 1, F = 96485 C mol–1arrow_forward
- Indicate the correct options.1. The units of the transport number are Siemens per mole.2. The Siemens and the ohm are not equivalent.3. The Van't Hoff factor is dimensionless.4. Molar conductivity does not depend on the electrolyte concentration.arrow_forwardIdeally nonpolarizable electrodes can1. participate as reducers in reactions.2. be formed only with hydrogen.3. participate as oxidizers in reactions.4. form open and closed electrochemical systems.arrow_forwardIndicate the options for an electrified interface:1. Temperature has no influence on it.2. Not all theories that describe it include a well-defined electrical double layer.3. Under favorable conditions, its differential capacitance can be determined with the help of experimental measurements.4. A component with high electronic conductivity is involved in its formation.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





