Concept explainers
The change without the availability of principal mode of transportation considering personal transportation as well as goods and services.
Explanation of Solution
The principal modes of transportation are,
- Road transportation
- Rail transportation
- Air transportation
If the principal modes of transportation are not available, then life becomes very tough as everyone is dependent on it. Our day to day life and activities are dependent on transportation, and it will be largely affected without it.
To reach from one place to another like school, office, shopping and covering large distances will become difficult. Unavailability of transportation will influence the livelihood of people and force an individual to stay at one place.
Goods and services will also be disturbed due to lack of transportation. Goods produced at one place needs be transported to another to earn money by selling them. Customers of these goods and services will also be deprived of these good and services due to lack of transportation.
Want to see more full solutions like this?
Chapter 2 Solutions
Traffic And Highway Engineering
- Direction: Write the answer in a bond paper with complete solutions drawings. Strictly write in bond paper and picture it. Topic: Sheer & Moment diagrams, Reaction at Supports, Load Tracing, Method of Joint, and Method of Section Course: Theory Of Structurearrow_forward1. Create Diagrams: Draw the shear and moment diagrams for the given beam. 8k 15k-ft B 12 k -6 ft- -8 ft--8 ft- -8 ft- 4k 4 ft 2 ftarrow_forward10:46 Mechanics of Deform... ← CE104.2T.24.25. FA 1 5 of 6 2.5/10 Rigid bar ABCD is loaded and supported as shown. Steel [E=27800 ksi] bars (1) and (2) are unstressed before the load P is applied. Bar (1) has a cross- sectional area of 0.83 in.² and bar (2) has a cross- sectional area of 0.45 in.2. After load P is applied, the strain in bar (1) is found to be 670 με. Assume L₁=58 in., L2-94 in., a=26 in., b=22 in., and c=36 in. Determine: (a) the stresses in bars (1) and (2). (b) the vertical deflection VD of point D on the rigid bar. (c) the load P. A L₁ B L2 a b 223 D Stream Courses Calendar Morearrow_forward
- Q1: Draw N.F.D, S.F.D and B.M.D for the frame shown below. Knowing that t support at A is hinge, and at D is roller. B 2 m 5 kN/m C 30 kN 2 D 5 marrow_forwardplease the correct answerarrow_forwardQ1: Draw N.F.D, S.F.D and B.M.D for the frame shown below. Knowing that the support at A is hinge, and at D is roller. br Section C-D) 5 kN/m MC = 30x2) + (Dx *4) D لاک 15 B 2 m 2 m 30 kN DA DX 2 marrow_forward
- Traffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage LearningEngineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage LearningSolid Waste EngineeringCivil EngineeringISBN:9781305635203Author:Worrell, William A.Publisher:Cengage Learning,