Concept explainers
Calculate the loads that is acting on the floor beam BE and girder AC.
Answer to Problem 1P
The uniformly distributed load acting on the floor beam BE is
The load acting at A, B, and C on the girder AC are
Explanation of Solution
Given information:
The building is a single-story building.
The building is subjected to uniformly distributed load of
Calculation:
Show the roof of the single-story storage building as shown in Figure 1.
Refer Figure 1.
The columns are denoted by A, C, D, and F.
The floor beam is denoted by BE.
The girders are denoted by AC and DF.
Show the tributary area of the floor beam BE as shown in Figure 2.
Refer Figure 2.
The tributary area of the floor beam BE is denoted by the shaded area.
Calculate the tributary area of the floor beam BE
The length of the floor beam BE is
Calculate the uniformly distributed load
Substitute
Show the uniformly distributed load acting on the floor beam BE as shown in Figure 3.
Refer Figure 3.
The reactions at B and E are denoted by
The loading on the floor beam BE is symmetrical.
Calculate the value of
Show the uniformly distributed load acting on the floor beam BE as shown in Figure 4.
Refer Figure 4.
Thus, the uniformly distributed load acting on the floor beam BE is
Show the tributary area of the girder AC as shown in Figure 5.
Refer Figure 5.
The tributary area of the girder AC is denoted by the shaded area.
Calculate the tributary area of the girder AC
Calculate the load
Substitute
The total load acting on the tributary area of the girder AC is
Almost half the load acts at the junction of the floor beam BE and the girder AC. Then,
The load acting at B is
The remaining half of the load acts equally on the column A and C. Then,
The load acting at A is
Show the load acting on the girder AC as shown in Figure 6.
Refer Figure 6.
The reactions at A and C are denoted by
The loading on the girder AC is symmetrical.
Calculate the value of
Show the load acting on the girder AC as shown in Figure 7.
Refer Figure 7.
Thus, the load acting at A, B, and C on the girder AC are
Want to see more full solutions like this?
Chapter 2 Solutions
Structural Analysis, SI Edition
- 2.32 A driver is traveling at 52 mi/h on a wet road. An object is spotted on the road 415 ft ahead and the driver is able to come to a stop just before hitting the object. Assuming standard perception/reaction time and practical stopping distance, determine the grade of the road.arrow_forwardThe pumping system shown below is supposed to provide at least 250 GPM of water to the drinking trough. The outlet of the drawn tubing at the drinking water trough discharges to the atmosphere as a water jet. The outlet of the pipe is approximately 12 ft higher than the water surface of reservoir. Expected water temperature is 70ᵒF. Your objective is to select a pump and check its performance for the specified system. Your tasks include: 1. Determine total dynamic head (TDH) operating against the pump for the design flow rate. Neglect minor losses. Note that H-W is not appropriate for this water temperature, and you need to use D-W. 2. Use the TDH and Qdesign to approach a pump vendor. She provides you the attached four pump performance curves for your consideration. 3. Select the appropriate pump based on the fit of the selection point on the pump performance curves. 4. Develop the system curve. 5. Determine the pump operating point and record the system operating conditions…arrow_forward$$ 5.1 Assume that you are observing traffic in a single lane of a highway at a specific location. You measure the average headway and average spacing of passing vehicles as 3.2 seconds and 165 ft, respectively. Calculate the flow, average speed, and density of the traffic stream in this lane. 5.2 Assume that you are an observer standing at a point along a three-lane roadway. All vehicles in lane 1 are traveling at 30 mi/h, all vehicles in lane 2 are traveling at 45 mi/h, and all vehicles in lane 3 are traveling at 60 mi/h. There is also a constant spacing of 0.5 mile between vehicles. If you collect spot speed data for all vehicles as they cross your observation point, for 30 minutes, what will be the time-mean speed and space-mean speed for this traffic stream?arrow_forward
- Determine the direction of F2 such that the resultant force of adding F1 and F2 acts along the positive yaxis.arrow_forward3 decimal places answer don't use aiarrow_forward4.5 in 2.5 in. D B1 0 140 lb 5 in. 40° 20 lb Replace the forces acting at A and D with an equivalent force-couple system acting at point B. Force B = acting at a angle measured from the Submit part Couple M= in the direction. answered Submit partarrow_forward
- 4.5 in. 2.5 in. 140 lb B Only handwritten 5 in. 40° 120 lb Replace the forces acting at A and D with an equivalent force-couple system acting at point B. Force B = acting at a angle measured from the Submit part Couple M= in the direction. Unansweredarrow_forward1.) Calculate the internal forces and moments (shear force, bending moment, and axial force if applicable) at point C on the beam shown below. Clearly show all your steps, including the calculation of support reactions, and the determination of internal loadings at point C. (Ans: Nc = 0 kN, Vc = -6.53 kN, Mc = 71.68 kN.m) 40 pts. 7.5 kN A H 6.0 kN/m 4.0 kN 4.0 C B 2.0 3.0 7.0 1.5 2.0arrow_forwardPlease solve using cartesian coordinates. Be clear about why cos or sin is used (explain the trig). Make sure to account for the normal force.arrow_forward
- Solve /Draw the shear force and bending moment for these Don't use Artificial intelligencearrow_forwardA For the gravity concrete dam shown in the figure, the following data are available: -The factor of safety against sliding (F.S sliding) =1.2 - Unit weight of concrete (Yeone) 24 KN/m³ - Neglect( Wave pressure, silt pressure, ice force and earth quake force) H=0.65, (Ywater)= 9.81 KN/m³ Find factor of safety against overturning (F.S overturning) 10m 5m 6m 80marrow_forwardDraw the shear force and bending moment diagramarrow_forward
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Steel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage LearningArchitectural Drafting and Design (MindTap Course...Civil EngineeringISBN:9781285165738Author:Alan Jefferis, David A. Madsen, David P. MadsenPublisher:Cengage LearningEngineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage Learning