
Concept explainers
(a)
To plot:The position x of a body oscillating on a spring as a function of time.
(a)

Explanation of Solution
Given:
The equation of position x as a function of time
The values of the constants
The time interval
Calculation:
Using the given values of the variables in the given equation,
On a spreadsheet calculate the values of the position with respect to time and plot a graph as shown.
t in s | x in cm |
0 | 0 |
1 | 0.87054 |
2 | 1.71449 |
3 | 2.50607 |
4 | 3.22109 |
5 | 3.83772 |
6 | 4.33712 |
7 | 4.70403 |
8 | 4.92725 |
9 | 4.99996 |
10 | 4.91993 |
11 | 4.68961 |
12 | 4.31605 |
13 | 3.81064 |
14 | 3.18882 |
15 | 2.4696 |
16 | 1.67494 |
17 | 0.82912 |
18 | -0.042 |
19 | -0.9119 |
20 | -1.7539 |
21 | -2.5424 |
22 | -3.2531 |
23 | -3.8645 |
24 | -4.3579 |
25 | -4.7181 |
26 | -4.9342 |
27 | -4.9996 |
28 | -4.9123 |
29 | -4.6749 |
30 | -4.2947 |
31 | -3.7833 |
32 | -3.1563 |
33 | -2.433 |
34 | -1.6353 |
35 | -0.7876 |
36 | 0.08407 |
Figure 1
Conclusion:
Thus, the position x of the object which undergoes oscillation following the equation
(b)
To measure:The slope of the
(b)

Answer to Problem 114P
The velocity of the object at time
Explanation of Solution
Given:
The
Calculation:
Draw a tangent to the curve at time
Figure 2
From Figure 2, the slope of the tangent (drawn in red) is given by,
Hence the velocity of the object at time
Conclusion:
Thus, the velocity of the object at time
(c)
To calculate:The average velocity for a series of intervals starting from
(c)

Answer to Problem 114P
The average velocities for the time intervals starting at
Explanation of Solution
Given:
The equation for the position of the oscillating particle
The times at which the average velocity is determined
Formula used:
The average velocity of a particle is the rate of change of position of the object during the time interval.
Calculation:
Determine the value of the position of the object
Determine the position of the particle at time
Determine the average velocity for the time interval
Find the position of the particle at time
Determine the average velocity for the time interval
Find the position of the particle at time
Determine the average velocity for the time interval
Find the position of the particle at time
Determine the average velocity for the time interval
Find the position of the particle at time
Determine the average velocity for the time interval
Find the position of the particle at time
Determine the average velocity for the time interval
Conclusion:
Thus, the average velocities for the time intervals starting at
(d)
To compute:
(d)

Answer to Problem 114P
The value of
Explanation of Solution
Given:
The equation for the position of the oscillating particle
Formula used:
The velocity of a particle is the first derivative of the position with respect to time and is given by,
Calculation:
Differentiate the given equation with respect to time.
Substitute
Conclusion:
The value of
(e)
To compare: the results of parts (c) and (d) and explain why the part(c) results approach part (d) result.
(e)

Explanation of Solution
Given:
Results of part (c)
The average velocities of the particle for the time intervals starting at
are as follows:
Time interval(s) | Average velocity (cm/s) |
0-6.0 | 0.72 |
0-3.0 | 0.86 |
0-2.0 | 0.86 |
0-1.0 | 0.87 |
0-0.50 | 0.87 |
0.25 | 0.87 |
Results of part (d)
The instantaneous velocity of the particle at time
Introduction:
Average velocity is defined as the ratio of change in position to the time interval.
The instantaneous velocity is given by,
As the measured time interval becomes smaller, the average velocity approaches the instantaneous velocity. For a large time interval such as
Conclusion:
Thus, it can be seen that as th magnitude of the measured time intervals decrease, the values of the average velocities approach the value of instantaneous velocity.
Want to see more full solutions like this?
Chapter 2 Solutions
Physics for Scientists and Engineers
- Consider the circuit shown in the figure below. (Assume L = 5.20 m and R2 = 440 Ω.) (a) When the switch is in position a, for what value of R1 will the circuit have a time constant of 15.4 µs? (b) What is the current in the inductor at the instant the switch is thrown to position b?arrow_forwardCan someone helparrow_forwardCan someone help mearrow_forward
- A particle in a box between x=0 and x=6 has the wavefunction Psi(x)=A sin(2πx). How muchenergy is required for the electron to make a transition to Psi(x)= A’ sin(7π x/3). Draw anapproximate graph for the wavefunction. Find A and A'arrow_forwardA proton is moving with 10^8 m/s speed. Find the De Broglie wavelength associated with theproton and the frequency of that wave.arrow_forwardFind the wavelength of the photon if a (Li--) electron makes a transition from n=4 to n=3. Findthe Bohr radius for each state.arrow_forward
- A photon with wavelength 3000 nm hits a stationary electron. After the collision electron isscattered to 60 degrees. Find the wavelength and frequency of the scattered photon.arrow_forwardA metal has threshold frequency 10^15. Calculate the maximum kinetic energy of the ejectedelectron if a laser beam with wavelength 1.5 10^-7 m is projected on the metal.arrow_forwardDetermine the direction of the vector V, B, or ♬ that is missing from the pair of vectors shown in each scenario. Here, u is the velocity vector of a moving positive charge, B is a constant and uniform magnetic field, and F is the resulting force on the moving charge. 1. 2. 3. B OB F 4. ↑F F 5. 怔 ↑ ↑F Answer Bank 6. ↑ TE Farrow_forward
- Two point charges (+9.80 nC and -9.80 nC) are located 8.00 cm apart. Let U=0 when all of the charges are separated by infinite distances. What is the potential energy if a third point charge q=-4.20 nC is placed at point b? 8.00 cm 8.00 cm 4.00 +4.00 +4.00- cm cm cm HJarrow_forward! Required information Two chloride ions and two sodium ions are in water, the "effective charge" on the chloride ions (CI¯) is −2.00 × 10-21 C and that of the sodium ions (Na+) is +2.00 x 10-21 C. (The effective charge is a way to account for the partial shielding due to nearby water molecules.) Assume that all four ions are coplanar. CT Na+ Na+ 30.0° 45.0% с сг L. where a = 0.300 nm, b = 0.710 nm, and c = 0.620 nm. What is the direction of electric force on the chloride ion in the lower right-hand corner in the diagram? Enter the angle in degrees where positive indicates above the negative x-axis and negative indicates below the positive x-axis.arrow_forwardA pendulum has a 0.4-m-long cord and is given a tangential velocity of 0.2 m/s toward the vertical from a position 0 = 0.3 rad. Part A Determine the equation which describes the angular motion. Express your answer in terms of the variable t. Express coefficients in radians to three significant figures. ΜΕ ΑΣΦ vec (t)=0.3 cos (4.95t) + 0.101 sin (4.95t) Submit Previous Answers Request Answer × Incorrect; Try Again; 6 attempts remainingarrow_forward
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning





