
Concept explainers
(a)
To plot:The position x of a body oscillating on a spring as a function of time.
(a)

Explanation of Solution
Given:
The equation of position x as a function of time
The values of the constants
The time interval
Calculation:
Using the given values of the variables in the given equation,
On a spreadsheet calculate the values of the position with respect to time and plot a graph as shown.
t in s | x in cm |
0 | 0 |
1 | 0.87054 |
2 | 1.71449 |
3 | 2.50607 |
4 | 3.22109 |
5 | 3.83772 |
6 | 4.33712 |
7 | 4.70403 |
8 | 4.92725 |
9 | 4.99996 |
10 | 4.91993 |
11 | 4.68961 |
12 | 4.31605 |
13 | 3.81064 |
14 | 3.18882 |
15 | 2.4696 |
16 | 1.67494 |
17 | 0.82912 |
18 | -0.042 |
19 | -0.9119 |
20 | -1.7539 |
21 | -2.5424 |
22 | -3.2531 |
23 | -3.8645 |
24 | -4.3579 |
25 | -4.7181 |
26 | -4.9342 |
27 | -4.9996 |
28 | -4.9123 |
29 | -4.6749 |
30 | -4.2947 |
31 | -3.7833 |
32 | -3.1563 |
33 | -2.433 |
34 | -1.6353 |
35 | -0.7876 |
36 | 0.08407 |
Figure 1
Conclusion:
Thus, the position x of the object which undergoes oscillation following the equation
(b)
To measure:The slope of the
(b)

Answer to Problem 114P
The velocity of the object at time
Explanation of Solution
Given:
The
Calculation:
Draw a tangent to the curve at time
Figure 2
From Figure 2, the slope of the tangent (drawn in red) is given by,
Hence the velocity of the object at time
Conclusion:
Thus, the velocity of the object at time
(c)
To calculate:The average velocity for a series of intervals starting from
(c)

Answer to Problem 114P
The average velocities for the time intervals starting at
Explanation of Solution
Given:
The equation for the position of the oscillating particle
The times at which the average velocity is determined
Formula used:
The average velocity of a particle is the rate of change of position of the object during the time interval.
Calculation:
Determine the value of the position of the object
Determine the position of the particle at time
Determine the average velocity for the time interval
Find the position of the particle at time
Determine the average velocity for the time interval
Find the position of the particle at time
Determine the average velocity for the time interval
Find the position of the particle at time
Determine the average velocity for the time interval
Find the position of the particle at time
Determine the average velocity for the time interval
Find the position of the particle at time
Determine the average velocity for the time interval
Conclusion:
Thus, the average velocities for the time intervals starting at
(d)
To compute:
(d)

Answer to Problem 114P
The value of
Explanation of Solution
Given:
The equation for the position of the oscillating particle
Formula used:
The velocity of a particle is the first derivative of the position with respect to time and is given by,
Calculation:
Differentiate the given equation with respect to time.
Substitute
Conclusion:
The value of
(e)
To compare: the results of parts (c) and (d) and explain why the part(c) results approach part (d) result.
(e)

Explanation of Solution
Given:
Results of part (c)
The average velocities of the particle for the time intervals starting at
are as follows:
Time interval(s) | Average velocity (cm/s) |
0-6.0 | 0.72 |
0-3.0 | 0.86 |
0-2.0 | 0.86 |
0-1.0 | 0.87 |
0-0.50 | 0.87 |
0.25 | 0.87 |
Results of part (d)
The instantaneous velocity of the particle at time
Introduction:
Average velocity is defined as the ratio of change in position to the time interval.
The instantaneous velocity is given by,
As the measured time interval becomes smaller, the average velocity approaches the instantaneous velocity. For a large time interval such as
Conclusion:
Thus, it can be seen that as th magnitude of the measured time intervals decrease, the values of the average velocities approach the value of instantaneous velocity.
Want to see more full solutions like this?
Chapter 2 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
- Hi! I need help with these calculations for part i and part k for a physics Diffraction Lab. We used a slit width 0.4 mm to measure our pattern.arrow_forwardExamine the data and % error values in Data Table 3 where the angular displacement of the simple pendulum decreased but the mass of the pendulum bob and the length of the pendulum remained constant. Describe whether or not your data shows that the period of the pendulum depends on the angular displacement of the pendulum bob, to within a reasonable percent error.arrow_forwardIn addition to the anyalysis of the graph, show mathematically that the slope of that line is 2π/√g . Using the slope of your line calculate the value of g and compare it to 9.8.arrow_forward
- An object is placed 24.1 cm to the left of a diverging lens (f = -6.51 cm). A concave mirror (f= 14.8 cm) is placed 30.2 cm to the right of the lens to form an image of the first image formed by the lens. Find the final image distance, measured relative to the mirror. (b) Is the final image real or virtual? (c) Is the final image upright or inverted with respect to the original object?arrow_forwardConcept Simulation 26.4 provides the option of exploring the ray diagram that applies to this problem. The distance between an object and its image formed by a diverging lens is 5.90 cm. The focal length of the lens is -2.60 cm. Find (a) the image distance and (b) the object distance.arrow_forwardPls help ASAParrow_forward
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning





