
Concept explainers
(a)
To plot: The velocity-time graph and acceleration-time graph for given situation on a single graph.
(a)

Explanation of Solution
Given:
The free fall of the professor is for
Initial velocity of the professor is
The acceleration opposite to gravity applied after free fall is
The speed which is maintained until she reaches the ground is
Formula used:
Write expression for the final velocity of the professor during free fall.
Here,
The initial speed when she starts slowing her rate of descent will be same as the final velocity of the free fall.
Write expression for final speed of professor when she reaches
Rearrange above expression for
Here
Calculation:
Substitute
Substitute
The graph for the velocity and acceleration of the professor is shown in figure 1.
(b)
To find:The speed of professor at the end of first
(b)

Answer to Problem 102P
The speed of professor at the end of
Explanation of Solution
Given:
The initial speed of the professor is
The time of fall of the professor is
The acceleration due to gravity on the surface of earth is
Formula used:
The professor jumps out of the helicopter and falls freely under the action of acceleration due to gravity, the motion of the professor for these first
The first equation of motion relates the initial and final velocity of a body falling freely under the gravity. Therefore, the velocity of the professor can be obtained from this expression at the instant of
Write expression for the final velocity of the professor during free fall.
Calculation:
Substitute
Conclusion:
Thus, the speed of professor at the end of
(c)
To find: The duration for which the professor descends her speed.
(c)

Answer to Problem 102P
Explanation of Solution
Given:
The initial speed of the professor during descend is
The final speed of the professor at which time is measured is
The deceleration of the professor is
Formula used:
The time taken by the professor during her slow rate of descent can be obtained from Newton’s first equation of motion.
Write expression for final speed of professor.
Rearrange above expression for
Calculation:
Substitute
Conclusion:
Thus, the duration for which she descends her speed is
(d)
To find:Distance covered by the professor when she descends her speed.
(d)

Answer to Problem 102P
Explanation of Solution
Given:
The initial speed of the professor during descend is
The deceleration of the professor is
Formula used:
Write expression for final speed of the professor during the descent.
Rearrange above expression for
Calculation:
Substitute
The negative sign shows the direction of motion.
Conclusion:
Thus, the distance covered by the professor during the descent is
(e)
To find:Time required by the professor to reach the ground.
(e)

Answer to Problem 102P
Explanation of Solution
Given:
The altitude of helicopter is
Formula used:
Write expression for distance travelled during free fall of the professor.
Write expression for the distance covered when she maintains constant speed of
Here, S is the distance covered during constant speed motion.
Write expression for time taken to when professor maintained constant speed.
Write expression for total time of journey.
Calculation:
Substitute
Here, negative sign shows the direction of motion.
Substitute
Substitute
Substitute
Conclusion:
Thus, the total time taken by the professor for complete journey is
(f)
To find:The average velocity of professor for entire trip.
(f)

Answer to Problem 102P
Explanation of Solution
Given:
The distance through which the professor falls is
The time for which the professor falls is
Formula used:
Average velocity is defined as the ratio of total distance covered to the total time taken during the journey.
Write expression for average velocity of the professor.
Here
Calculation:
Substitute
Conclusion:
Thus, the average velocity of the professor is
Want to see more full solutions like this?
Chapter 2 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
- An L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forwardA long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forwardDescribe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forward
- Discuss the differences between the Biot-Savart law and Coulomb’s law in terms of their applicationsand the physical quantities they describe.arrow_forwardExplain why Ampere’s law can be used to find the magnetic field inside a solenoid but not outside.arrow_forward3. An Atwood machine consists of two masses, mA and m B, which are connected by an inelastic cord of negligible mass that passes over a pulley. If the pulley has radius RO and moment of inertia I about its axle, determine the acceleration of the masses mA and m B, and compare to the situation where the moment of inertia of the pulley is ignored. Ignore friction at the axle O. Use angular momentum and torque in this solutionarrow_forward
- A 0.850-m-long metal bar is pulled to the right at a steady 5.0 m/s perpendicular to a uniform, 0.650-T magnetic field. The bar rides on parallel metal rails connected through a 25-Ω, resistor (Figure 1), so the apparatus makes a complete circuit. Ignore the resistance of the bar and the rails. Please explain how to find the direction of the induced current.arrow_forwardFor each of the actions depicted, determine the direction (right, left, or zero) of the current induced to flow through the resistor in the circuit containing the secondary coil. The coils are wrapped around a plastic core. Immediately after the switch is closed, as shown in the figure, (Figure 1) in which direction does the current flow through the resistor? If the switch is then opened, as shown in the figure, in which direction does the current flow through the resistor? I have the answers to the question, but would like to understand the logic behind the answers. Please show steps.arrow_forwardWhen violet light of wavelength 415 nm falls on a single slit, it creates a central diffraction peak that is 8.60 cm wide on a screen that is 2.80 m away. Part A How wide is the slit? ΟΙ ΑΣΦ ? D= 2.7.10-8 Submit Previous Answers Request Answer × Incorrect; Try Again; 8 attempts remaining marrow_forward
- Two complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find θ for (z1-z∗2)/z1+z2∗. Find r and θ for (z1−z2∗)z1z2∗ Please show all stepsarrow_forwardCalculate the center of mass of the hollow cone shown below. Clearly specify the origin and the coordinate system you are using. Z r Y h Xarrow_forward12. If all three collisions in the figure below are totally inelastic, which will cause more damage? (think about which collision has a larger amount of kinetic energy dissipated/lost to the environment? I m II III A. I B. II C. III m m v brick wall ע ע 0.5v 2v 0.5m D. I and II E. II and III F. I and III G. I, II and III (all of them) 2marrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





