
Concept explainers
(a)
To plot: The velocity-time graph and acceleration-time graph for given situation on a single graph.
(a)

Explanation of Solution
Given:
The free fall of the professor is for
Initial velocity of the professor is
The acceleration opposite to gravity applied after free fall is
The speed which is maintained until she reaches the ground is
Formula used:
Write expression for the final velocity of the professor during free fall.
Here,
The initial speed when she starts slowing her rate of descent will be same as the final velocity of the free fall.
Write expression for final speed of professor when she reaches
Rearrange above expression for
Here
Calculation:
Substitute
Substitute
The graph for the velocity and acceleration of the professor is shown in figure 1.
(b)
To find:The speed of professor at the end of first
(b)

Answer to Problem 102P
The speed of professor at the end of
Explanation of Solution
Given:
The initial speed of the professor is
The time of fall of the professor is
The acceleration due to gravity on the surface of earth is
Formula used:
The professor jumps out of the helicopter and falls freely under the action of acceleration due to gravity, the motion of the professor for these first
The first equation of motion relates the initial and final velocity of a body falling freely under the gravity. Therefore, the velocity of the professor can be obtained from this expression at the instant of
Write expression for the final velocity of the professor during free fall.
Calculation:
Substitute
Conclusion:
Thus, the speed of professor at the end of
(c)
To find: The duration for which the professor descends her speed.
(c)

Answer to Problem 102P
Explanation of Solution
Given:
The initial speed of the professor during descend is
The final speed of the professor at which time is measured is
The deceleration of the professor is
Formula used:
The time taken by the professor during her slow rate of descent can be obtained from Newton’s first equation of motion.
Write expression for final speed of professor.
Rearrange above expression for
Calculation:
Substitute
Conclusion:
Thus, the duration for which she descends her speed is
(d)
To find:Distance covered by the professor when she descends her speed.
(d)

Answer to Problem 102P
Explanation of Solution
Given:
The initial speed of the professor during descend is
The deceleration of the professor is
Formula used:
Write expression for final speed of the professor during the descent.
Rearrange above expression for
Calculation:
Substitute
The negative sign shows the direction of motion.
Conclusion:
Thus, the distance covered by the professor during the descent is
(e)
To find:Time required by the professor to reach the ground.
(e)

Answer to Problem 102P
Explanation of Solution
Given:
The altitude of helicopter is
Formula used:
Write expression for distance travelled during free fall of the professor.
Write expression for the distance covered when she maintains constant speed of
Here, S is the distance covered during constant speed motion.
Write expression for time taken to when professor maintained constant speed.
Write expression for total time of journey.
Calculation:
Substitute
Here, negative sign shows the direction of motion.
Substitute
Substitute
Substitute
Conclusion:
Thus, the total time taken by the professor for complete journey is
(f)
To find:The average velocity of professor for entire trip.
(f)

Answer to Problem 102P
Explanation of Solution
Given:
The distance through which the professor falls is
The time for which the professor falls is
Formula used:
Average velocity is defined as the ratio of total distance covered to the total time taken during the journey.
Write expression for average velocity of the professor.
Here
Calculation:
Substitute
Conclusion:
Thus, the average velocity of the professor is
Want to see more full solutions like this?
Chapter 2 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
- Aromatic molecules like those in perfume have a diffusion coefficient in air of approximately 2×10−5m2/s2×10−5m2/s. Part A Estimate, to one significant figure, how many hours it takes perfume to diffuse 2.5 mm, about 6.5 ftft, in still air. Express your answer in hours to one significant figure.arrow_forwardRocket Science: CH 83. A rocket of mass M moving at speed v ejects an infinitesimal mass dm out its exhaust nozzle at speed vex. (a) Show that con- servation of momentum implies that M dy = vex dm, where dy is the change in the rocket's speed. (b) Integrate this equation from some initial speed v; and mass M; to a final speed vf and mass Mf Vf to show that the rocket's final velocity is given by the expression V₁ = V¡ + Vex ln(M¡/M₁).arrow_forwardFormant Freqmcy The horizontal dotted lines represent the formants. The first box represents the schwa sound. The second box is a different vowel. The scale is the same on each of these two vowels. Use the two formant contours to answer questions 12-16 SCHWA VOWEL 2 0.179362213 Time (s) 0.92125285 0.0299637119 4000 1079 Time(s) unknown 0.6843 13. Please describe what the tongue is doing to shift from the schwa to vowel 2? 14. Is vowel 2 a rounded or unrounded vowel? 15. Is vowel 2 a front or back vowel? 16. What vowel is vowel 2 (00, ee, ah) 0684285714arrow_forward
- microwavearrow_forward4) Consider the pulley (Mass = 20kg, Radius 0.3m) shown in the picture. Model this pulley as a uniform solid disk (1 = (1/2) MR2) that is hinged at its center of mass. If the hanging mass is 30 kg, and is released, (a) compute the angular acceleration of the pulley (b) calculate the acceleration of the hanging mass. A o 0.3 3019 20KSarrow_forwardRefer to the image attachedarrow_forward
- Shrinking Loop. A circular loop of flexible iron wire has an initial circumference of 161 cm , but its circumference is decreasing at a constant rate of 15.0 cm/s due to a tangential pull on the wire. The loop is in a constant uniform magnetic field of magnitude 1.00 T , which is oriented perpendicular to the plane of the loop. Assume that you are facing the loop and that the magnetic field points into the loop. Find the magnitude of the emf E induced in the loop after exactly time 9.00 s has passed since the circumference of the loop started to decrease. Find the direction of the induced current in the loop as viewed looking along the direction of the magnetic field. Please explain all stepsarrow_forwardMake up an application physics principle problem that provides three (3) significant equations based on the concepts of capacitors and ohm's law.arrow_forwardA straight horizontal garden hose 38.0 m long with an interior diameter of 1.50 cm is used to deliver 20oC water at the rate of 0.590 liters/s. Assuming that Poiseuille's Law applies, estimate the pressure drop (in Pa) from one end of the hose to the other.arrow_forward
- A rectangle measuring 30.0 cm by 40.0 cm is located inside a region of a spatially uniform magnetic field of 1.70 T , with the field perpendicular to the plane of the coil (the figure (Figure 1)). The coil is pulled out at a steady rate of 2.00 cm/s traveling perpendicular to the field lines. The region of the field ends abruptly as shown. Find the emf induced in this coil when it is all inside the field, when it is partly in the field, and when it is fully outside. Please show all steps.arrow_forwardA rectangular circuit is moved at a constant velocity of 3.00 m/s into, through, and then out of a uniform 1.25 T magnetic field, as shown in the figure (Figure 1). The magnetic field region is considerably wider than 50.0 cm . Find the direction (clockwise or counterclockwise) of the current induced in the circuit as it is going into the magnetic field (the first case), totally within the magnetic field but still moving (the second case), and moving out of the field (the third case). Find the magnitude of the current induced in the circuit as it is going into the magnetic field . Find the magnitude of the current induced in the circuit as it is totally within the magnetic field but still moving. Find the magnitude of the current induced in the circuit as it is moving out of the field. Please show all stepsarrow_forwardShrinking Loop. A circular loop of flexible iron wire has an initial circumference of 161 cm , but its circumference is decreasing at a constant rate of 15.0 cm/s due to a tangential pull on the wire. The loop is in a constant uniform magnetic field of magnitude 1.00 T , which is oriented perpendicular to the plane of the loop. Assume that you are facing the loop and that the magnetic field points into the loop. Find the magnitude of the emf E induced in the loop after exactly time 9.00 s has passed since the circumference of the loop started to decrease. Find the direction of the induced current in the loop as viewed looking along the direction of the magnetic field. Please explain all stepsarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





