Bam!— Apollo 15 Lands on the Moon The first word spoken on the surface of the Moon after Apollo 15 landed on July 30, 1971, was “Bam!” This was James Irwin’s involuntary reaction to their rather bone-jarring touchdown. “We did hit harder than any of the other flights!” says Irwin. “And I was startled, obviously, when I said. Bam!’" The reason for the “firm touchdown” of Apollo 15, as pilot David Scott later characterized it, was that the rocket engine was shut off a bit earlier than planned, when the lander was still 4.30 ft above the lunar surface and moving downward with a speed of 0.500 ft/s. From that point on the lander descended in lunar free fall, with an acceleration of 1.62 m/s 2 . As a result, the landing speed of Apollo 15 was by far the largest of any of the Apollo missions In comparison, Neil Armstrong s landing speed on Apollo 11 was the lowest at 1.7 ft/s—he didn’t shut off the engine until the footpads were actually on the surface. Apollos 12 , 14 , and 17 all landed with speeds between 3.0 and 3.5 ft/s. To better understand the descent of Apollo 15, we show its trajectory during the final stages of landing in Figure 2-47 (a) In Figure 2-47 (b) we show a variety of speed-versus-time plots. (a) (b) FIGURE 2-4 7 Problems 108, 109, 110, and 111 111. • Suppose, instead of shutting off the engine, the astronauts had increased its thrust, giving the lander a small, but constant, upward acceleration. Which speed-versus-time plot in Figure 2-48 (b) would describe this situation? A B C D
Bam!— Apollo 15 Lands on the Moon The first word spoken on the surface of the Moon after Apollo 15 landed on July 30, 1971, was “Bam!” This was James Irwin’s involuntary reaction to their rather bone-jarring touchdown. “We did hit harder than any of the other flights!” says Irwin. “And I was startled, obviously, when I said. Bam!’" The reason for the “firm touchdown” of Apollo 15, as pilot David Scott later characterized it, was that the rocket engine was shut off a bit earlier than planned, when the lander was still 4.30 ft above the lunar surface and moving downward with a speed of 0.500 ft/s. From that point on the lander descended in lunar free fall, with an acceleration of 1.62 m/s 2 . As a result, the landing speed of Apollo 15 was by far the largest of any of the Apollo missions In comparison, Neil Armstrong s landing speed on Apollo 11 was the lowest at 1.7 ft/s—he didn’t shut off the engine until the footpads were actually on the surface. Apollos 12 , 14 , and 17 all landed with speeds between 3.0 and 3.5 ft/s. To better understand the descent of Apollo 15, we show its trajectory during the final stages of landing in Figure 2-47 (a) In Figure 2-47 (b) we show a variety of speed-versus-time plots. (a) (b) FIGURE 2-4 7 Problems 108, 109, 110, and 111 111. • Suppose, instead of shutting off the engine, the astronauts had increased its thrust, giving the lander a small, but constant, upward acceleration. Which speed-versus-time plot in Figure 2-48 (b) would describe this situation? A B C D
The first word spoken on the surface of the Moon after Apollo 15 landed on July 30, 1971, was “Bam!” This was James Irwin’s involuntary reaction to their rather bone-jarring touchdown. “We did hit harder than any of the other flights!” says Irwin. “And I was startled, obviously, when I said. Bam!’"
The reason for the “firm touchdown” of Apollo 15, as pilot David Scott later characterized it, was that the rocket engine was shut off a bit earlier than planned, when the lander was still 4.30 ft above the lunar surface and moving downward with a speed of 0.500 ft/s. From that point on the lander descended in lunar free fall, with an acceleration of 1.62 m/s2. As a result, the landing speed of Apollo 15 was by far the largest of any of the Apollo missions In comparison, Neil Armstrong s landing speed on Apollo 11 was the lowest at 1.7 ft/s—he didn’t shut off the engine until the footpads were actually on the surface. Apollos 12, 14, and 17 all landed with speeds between 3.0 and 3.5 ft/s.
To better understand the descent of Apollo 15, we show its trajectory during the final stages of landing in Figure 2-47 (a) In Figure 2-47 (b) we show a variety of speed-versus-time plots.
(a)
(b)
FIGURE 2-47
Problems 108, 109, 110, and 111
111. • Suppose, instead of shutting off the engine, the astronauts had increased its thrust, giving the lander a small, but constant, upward acceleration. Which speed-versus-time plot in Figure 2-48 (b) would describe this situation?
2.62 Collision. The engineer of a passenger train traveling at
25.0 m/s sights a freight train whose caboose is 200 m ahead on the
same track (Fig. P2.62). The freight train is traveling at 15.0 m/s in the
same direction as the passenger train. The engineer of the passenger
train immediately applies the brakes, causing a constant acceleration
of 0.100 m/s² in a direction opposite to the train's velocity, while the
freight train continues with constant speed. Take x = 0 at the location
of the front of the passenger train when the engineer applies the brakes.
(a) Will the cows nearby witness a collision? (b) If so, where will it take
place? (c) On a single graph, sketch the positions of the front of the pas-
senger train and the back of the freight train.
Can I get help with how to calculate total displacement? The answer is 78.3x-4.8y
2.70 Egg Drop. You are on the Figure P2.70
roof of the physics building, 46.0 m
above the ground (Fig. P2.70). Your
physics professor, who is 1.80 m tall,
is walking alongside the building at
a constant speed of 1.20 m/s. If you
wish to drop an egg on your profes-
sor's head, where should the profes-
sor be when you release the egg?
Assume that the egg is in free fall.
2.71 CALC The acceleration
of a particle is given by ax(t) =
-2.00 m/s² +(3.00 m/s³)t. (a)
Find the initial velocity Vox such that
v = 1.20 m/s
1.80 m
46.0 m
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.