Concept explainers
(a)
The yield strength if hot rolled AISI 1212 HR steel undergoes a 20 percent cold-work operation.
The ultimate strength if hot rolled AISI 1212 HR steel undergoes a 20 percent cold-work operation.
The percentage increase in yield strength.
The percentage increase in ultimate strength.
(a)
Answer to Problem 10P
The yield strength if hot rolled AISI 1212 HR steel undergoes a 20 percent cold-work operation is
The ultimate strength if hot rolled AISI 1212 HR steel undergoes a 20 percent cold-work operation is
The percentage increase in yield strength is
The percentage increase in ultimate strength is
Explanation of Solution
Write the expression for work load factor and area.
Here, the original area is
Write the expression for true strain.
Here, the true strain is
Calculate the new yield strength after cold work.
Here, the yield strength is
Calculate the new ultimate strength after cold work.
Here, the new ultimate strength after clod work is
Calculate the percentage increase in yield strength.
Here, the percentage increase in yield strength is
Calculate the percentage increase in ultimate strength.
Here, the percentage increase in ultimate strength is
Conclusion:
Refer to Table A-22 “Results of Tensile Test of Some Metals” for hot rolled AISI 1212 steel.
Obtain the yield strength as
The steel undergoes
Substitute
Substitute
Substitute
Thus, the yield strength is
Substitute
Thus, the percentage increase in yield strength is
Substitute
Thus, the ultimate strength is
Substitute
Thus, the percentage increase in ultimate strength is
(b)
The ratio of ultimate and yield strength before cold-work operation.
The ratio of ultimate and yield strength after cold-work operation and explain the ductility of part with the help of result.
(b)
Answer to Problem 10P
The ratio of ultimate and yield strength before cold-work operation is
The ratio of ultimate and yield strength after cold-work operation is
Explanation of Solution
Calculate the ratio of ultimate strength to yield strength before cold work.
Here, the ratio of ultimate strength to yield strength is
Calculate the ratio of ultimate strength to yield strength after cold work.
Here, the ratio of ultimate strength to yield strength after cold work is
Conclusion:
Substitute
Thus, the ratio of ultimate strength to yield strength before cold work is
Substitute
Thus, the ratio of ultimate strength to yield strength after cold work is
From the calculated value of
Want to see more full solutions like this?
Chapter 2 Solutions
Shigley's Mechanical Engineering Design (McGraw-Hill Series in Mechanical Engineering)
- What is the reading on the vernier calipers? 7 6 0 5 10 8arrow_forwardDetermine the moments of the force about the x and the a axes. O 4 m F = {-40i +20j + 10k} N 3 m 6 m aarrow_forward6. A part of the structure for a factory automation system is a beam that spans 30.0 in as shown in Figure P5-6. Loads are applied at two points, each 8.0 in from a support. The left load F₁ = 1800 lb remains constantly applied, while the right load F₂ = 1800 lb is applied and removed fre- quently as the machine cycles. Evaluate the beam at both B and C. A 8 in F₁ = 1800 lb 14 in F2 = 1800 lb 8 in D RA B C 4X2X1/4 Steel tube Beam cross section RDarrow_forward
- 30. Repeat Problem 28, except using a shaft that is rotating and transmitting a torque of 150 N⚫m from the left bear- ing to the middle of the shaft. Also, there is a profile key- seat at the middle under the load.arrow_forward28. The shaft shown in Figure P5-28 is supported by bear- ings at each end, which have bores of 20.0 mm. Design the shaft to carry the given load if it is steady and the shaft is stationary. Make the dimension a as large as pos- sible while keeping the stress safe. Determine the required d = 20mm D = ? R = ?| 5.4 kN d=20mm Length not to scale -a = ?- +а= a = ? + -125 mm- -250 mm- FIGURE P5-28 (Problems 28, 29, and 30)arrow_forward12. Compute the estimated actual endurance limit for SAE 4130 WQT 1300 steel bar with a rectangular cross sec- tion of 20.0 mm by 60 mm. It is to be machined and subjected to repeated and reversed bending stress. A reli- ability of 99% is desired.arrow_forward
- 28. The shaft shown in Figure P5-28 is supported by bear- ings at each end, which have bores of 20.0 mm. Design the shaft to carry the given load if it is steady and the shaft is stationary. Make the dimension a as large as pos- sible while keeping the stress safe. Determine the required d = 20mm D = ? R = ?| 5.4 kN d=20mm Length not to scale -a = ?- +а= a = ? + -125 mm- -250 mm- FIGURE P5-28 (Problems 28, 29, and 30)arrow_forward2. A strut in a space frame has a rectangular cross section of 10.0 mm by 30.0 mm. It sees a load that varies from a tensile force of 20.0 kN to a compressive force of 8.0 kN.arrow_forwardfind stress at Qarrow_forward
- I had a theoretical question about attitude determination. In the attached images, I gave two axis and angles. The coefficient of the axes are the same and the angles are the same. The only difference is the vector basis. Lets say there is a rotation going from n hat to b hat. Then, you introduce a intermediate rotation s hat. So, I want to know if the DCM produced from both axis and angles will be the same or not. Does the vector basis affect the numerical value of the DCM? The DCM formula only cares about the coefficient of the axis and the angle. So, they should be the same right?arrow_forward3-15. A small fixed tube is shaped in the form of a vertical helix of radius a and helix angle y, that is, the tube always makes an angle y with the horizontal. A particle of mass m slides down the tube under the action of gravity. If there is a coefficient of friction μ between the tube and the particle, what is the steady-state speed of the particle? Let y γ 30° and assume that µ < 1/√3.arrow_forwardThe plate is moving at 0.6 mm/s when the force applied to the plate is 4mN. If the surface area of the plate in contact with the liquid is 0.5 m^2, deterimine the approximate viscosity of the liquid, assuming that the velocity distribution is linear.arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning