Bam!— Apollo 15 Lands on the Moon The first word spoken on the surface of the Moon after Apollo 15 landed on July 30, 1971, was “Bam!” This was James Irwin’s involuntary reaction to their rather bone-jarring touchdown. “We did hit harder than any of the other flights!” says Irwin. “And I was startled, obviously, when I said. Bam!’" The reason for the “firm touchdown” of Apollo 15, as pilot David Scott later characterized it, was that the rocket engine was shut off a bit earlier than planned, when the lander was still 4.30 ft above the lunar surface and moving downward with a speed of 0.500 ft/s. From that point on the lander descended in lunar free fall, with an acceleration of 1.62 m/s 2 . As a result, the landing speed of Apollo 15 was by far the largest of any of the Apollo missions In comparison, Neil Armstrong s landing speed on Apollo 11 was the lowest at 1.7 ft/s—he didn’t shut off the engine until the footpads were actually on the surface. Apollos 12 , 14 , and 17 all landed with speeds between 3.0 and 3.5 ft/s. To better understand the descent of Apollo 15, we show its trajectory during the final stages of landing in Figure 2-47 (a) In Figure 2-47 (b) we show a variety of speed-versus-time plots. (a) (b) FIGURE 2-4 7 Problems 108, 109, 110, and 111 109. •• What was the impact speed of the lander when it touched down? Give your answer in feet per second (ft/s), the same units used by the astronauts. A. A. 2.41 ft/s B. B 6.78 ft/s C. C. 9.95 ft/s D. D. 10.6 ft/s
Bam!— Apollo 15 Lands on the Moon The first word spoken on the surface of the Moon after Apollo 15 landed on July 30, 1971, was “Bam!” This was James Irwin’s involuntary reaction to their rather bone-jarring touchdown. “We did hit harder than any of the other flights!” says Irwin. “And I was startled, obviously, when I said. Bam!’" The reason for the “firm touchdown” of Apollo 15, as pilot David Scott later characterized it, was that the rocket engine was shut off a bit earlier than planned, when the lander was still 4.30 ft above the lunar surface and moving downward with a speed of 0.500 ft/s. From that point on the lander descended in lunar free fall, with an acceleration of 1.62 m/s 2 . As a result, the landing speed of Apollo 15 was by far the largest of any of the Apollo missions In comparison, Neil Armstrong s landing speed on Apollo 11 was the lowest at 1.7 ft/s—he didn’t shut off the engine until the footpads were actually on the surface. Apollos 12 , 14 , and 17 all landed with speeds between 3.0 and 3.5 ft/s. To better understand the descent of Apollo 15, we show its trajectory during the final stages of landing in Figure 2-47 (a) In Figure 2-47 (b) we show a variety of speed-versus-time plots. (a) (b) FIGURE 2-4 7 Problems 108, 109, 110, and 111 109. •• What was the impact speed of the lander when it touched down? Give your answer in feet per second (ft/s), the same units used by the astronauts. A. A. 2.41 ft/s B. B 6.78 ft/s C. C. 9.95 ft/s D. D. 10.6 ft/s
The first word spoken on the surface of the Moon after Apollo 15 landed on July 30, 1971, was “Bam!” This was James Irwin’s involuntary reaction to their rather bone-jarring touchdown. “We did hit harder than any of the other flights!” says Irwin. “And I was startled, obviously, when I said. Bam!’"
The reason for the “firm touchdown” of Apollo 15, as pilot David Scott later characterized it, was that the rocket engine was shut off a bit earlier than planned, when the lander was still 4.30 ft above the lunar surface and moving downward with a speed of 0.500 ft/s. From that point on the lander descended in lunar free fall, with an acceleration of 1.62 m/s2. As a result, the landing speed of Apollo 15 was by far the largest of any of the Apollo missions In comparison, Neil Armstrong s landing speed on Apollo 11 was the lowest at 1.7 ft/s—he didn’t shut off the engine until the footpads were actually on the surface. Apollos 12, 14, and 17 all landed with speeds between 3.0 and 3.5 ft/s.
To better understand the descent of Apollo 15, we show its trajectory during the final stages of landing in Figure 2-47 (a) In Figure 2-47 (b) we show a variety of speed-versus-time plots.
(a)
(b)
FIGURE 2-47
Problems 108, 109, 110, and 111
109. •• What was the impact speed of the lander when it touched down? Give your answer in feet per second (ft/s), the same units used by the astronauts.
Physics different from a sea breeze from a land breeze
File Preview Design a capacitor for a special purpose.
After graduating from medical school you and a friend take a three hour cruise to celebrate and end up
stranded on an island. While looking for food, a spider falls on your friend giving them a heart attack.
Recalling your physics, you realize you can build a make-shift defibrillator by constructing a capacitor from
materials on the boat and charging it using the boat's battery. You know that the capacitor must hold 100
J of energy and be at 1000 V (fortunately this is an electric boat which has batteries that are 1000 V) to
work. You decide to construct the capacitor by tightly sandwiching a single layer of Saran wrap between
sheets of aluminum foil. You read the Saran wrap box and fortunately they tell you that it has a thickness
0.01 mm and dielectric constant of 2.3. The Saran wrap and foil are 40 cm wide and very long. How long
is the final capacitor you build that saves your friend?
How do I plot the force F in Matlba (of gravity pulling on the masses) versus spring displacement, and fit the data with a linear function to find the value for the spring constant. To get a linear fit, use polynomial order 1. Report the value of 'k' from the fit.
What code is used?
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.