Bam!— Apollo 15 Lands on the Moon The first word spoken on the surface of the Moon after Apollo 15 landed on July 30, 1971, was “Bam!” This was James Irwin’s involuntary reaction to their rather bone-jarring touchdown. “We did hit harder than any of the other flights!” says Irwin. “And I was startled, obviously, when I said. Bam!’" The reason for the “firm touchdown” of Apollo 15, as pilot David Scott later characterized it, was that the rocket engine was shut off a bit earlier than planned, when the lander was still 4.30 ft above the lunar surface and moving downward with a speed of 0.500 ft/s. From that point on the lander descended in lunar free fall, with an acceleration of 1.62 m/s 2 . As a result, the landing speed of Apollo 15 was by far the largest of any of the Apollo missions In comparison, Neil Armstrong s landing speed on Apollo 11 was the lowest at 1.7 ft/s—he didn’t shut off the engine until the footpads were actually on the surface. Apollos 12 , 14 , and 17 all landed with speeds between 3.0 and 3.5 ft/s. To better understand the descent of Apollo 15, we show its trajectory during the final stages of landing in Figure 2-47 (a) In Figure 2-47 (b) we show a variety of speed-versus-time plots. (a) (b) FIGURE 2-4 7 Problems 108, 109, 110, and 111 109. •• What was the impact speed of the lander when it touched down? Give your answer in feet per second (ft/s), the same units used by the astronauts. A. A. 2.41 ft/s B. B 6.78 ft/s C. C. 9.95 ft/s D. D. 10.6 ft/s
Bam!— Apollo 15 Lands on the Moon The first word spoken on the surface of the Moon after Apollo 15 landed on July 30, 1971, was “Bam!” This was James Irwin’s involuntary reaction to their rather bone-jarring touchdown. “We did hit harder than any of the other flights!” says Irwin. “And I was startled, obviously, when I said. Bam!’" The reason for the “firm touchdown” of Apollo 15, as pilot David Scott later characterized it, was that the rocket engine was shut off a bit earlier than planned, when the lander was still 4.30 ft above the lunar surface and moving downward with a speed of 0.500 ft/s. From that point on the lander descended in lunar free fall, with an acceleration of 1.62 m/s 2 . As a result, the landing speed of Apollo 15 was by far the largest of any of the Apollo missions In comparison, Neil Armstrong s landing speed on Apollo 11 was the lowest at 1.7 ft/s—he didn’t shut off the engine until the footpads were actually on the surface. Apollos 12 , 14 , and 17 all landed with speeds between 3.0 and 3.5 ft/s. To better understand the descent of Apollo 15, we show its trajectory during the final stages of landing in Figure 2-47 (a) In Figure 2-47 (b) we show a variety of speed-versus-time plots. (a) (b) FIGURE 2-4 7 Problems 108, 109, 110, and 111 109. •• What was the impact speed of the lander when it touched down? Give your answer in feet per second (ft/s), the same units used by the astronauts. A. A. 2.41 ft/s B. B 6.78 ft/s C. C. 9.95 ft/s D. D. 10.6 ft/s
The first word spoken on the surface of the Moon after Apollo 15 landed on July 30, 1971, was “Bam!” This was James Irwin’s involuntary reaction to their rather bone-jarring touchdown. “We did hit harder than any of the other flights!” says Irwin. “And I was startled, obviously, when I said. Bam!’"
The reason for the “firm touchdown” of Apollo 15, as pilot David Scott later characterized it, was that the rocket engine was shut off a bit earlier than planned, when the lander was still 4.30 ft above the lunar surface and moving downward with a speed of 0.500 ft/s. From that point on the lander descended in lunar free fall, with an acceleration of 1.62 m/s2. As a result, the landing speed of Apollo 15 was by far the largest of any of the Apollo missions In comparison, Neil Armstrong s landing speed on Apollo 11 was the lowest at 1.7 ft/s—he didn’t shut off the engine until the footpads were actually on the surface. Apollos 12, 14, and 17 all landed with speeds between 3.0 and 3.5 ft/s.
To better understand the descent of Apollo 15, we show its trajectory during the final stages of landing in Figure 2-47 (a) In Figure 2-47 (b) we show a variety of speed-versus-time plots.
(a)
(b)
FIGURE 2-47
Problems 108, 109, 110, and 111
109. •• What was the impact speed of the lander when it touched down? Give your answer in feet per second (ft/s), the same units used by the astronauts.
A pendulum has a 0.4-m-long cord and is given a tangential velocity of 0.2 m/s toward the
vertical from a position 0 = 0.3 rad.
Part A
Determine the equation which describes the angular motion.
Express your answer in terms of the variable t. Express coefficients in radians to three significant figures.
ΜΕ ΑΣΦ
vec
(t)=0.3 cos (4.95t) + 0.101 sin (4.95t)
Submit Previous Answers Request Answer
× Incorrect; Try Again; 6 attempts remaining
Part A
■Review
The uniform 150-lb stone (rectangular block) is being turned over on its side by pulling the
vertical cable slowly upward until the stone begins to tip.
(Figure 1)
If it then falls freely (T = 0) from an essentially balanced at-rest position, determine the speed at which the corner A strikes the pad at B. The stone does not slip at its corner C as it falls. Suppose that height of the stone is
L = 1.2 ft.
Express your answer to three significant figures and include the appropriate units.
?
ft
VA 10.76
S
Submit Previous Answers Request Answer
× Incorrect; Try Again; 6 attempts remaining
Consider the circuit shown in the figure. The battery has emf ε = 69 volts and negligible internal resistance. The inductance is L = 0.4 H and the resistances are R 1 = 12 Ω and R 2 = 9.0 Ω. Initially the switch S is open and no currents flow. Then the switch is closed. After leaving the switch closed for a very long time, it is opened again. Just after it is opened, what is the current in R 1?
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.