Bam!— Apollo 15 Lands on the Moon The first word spoken on the surface of the Moon after Apollo 15 landed on July 30, 1971, was “Bam!” This was James Irwin’s involuntary reaction to their rather bone-jarring touchdown. “We did hit harder than any of the other flights!” says Irwin. “And I was startled, obviously, when I said. Bam!’" The reason for the “firm touchdown” of Apollo 15, as pilot David Scott later characterized it, was that the rocket engine was shut off a bit earlier than planned, when the lander was still 4.30 ft above the lunar surface and moving downward with a speed of 0.500 ft/s. From that point on the lander descended in lunar free fall, with an acceleration of 1.62 m/s 2 . As a result, the landing speed of Apollo 15 was by far the largest of any of the Apollo missions In comparison, Neil Armstrong s landing speed on Apollo 11 was the lowest at 1.7 ft/s—he didn’t shut off the engine until the footpads were actually on the surface. Apollos 12 , 14 , and 17 all landed with speeds between 3.0 and 3.5 ft/s. To better understand the descent of Apollo 15, we show its trajectory during the final stages of landing in Figure 2-47 (a) In Figure 2-47 (b) we show a variety of speed-versus-time plots. (a) (b) FIGURE 2-4 7 Problems 108, 109, 110, and 111 111. • Suppose, instead of shutting off the engine, the astronauts had increased its thrust, giving the lander a small, but constant, upward acceleration. Which speed-versus-time plot in Figure 2-48 (b) would describe this situation? A B C D
Bam!— Apollo 15 Lands on the Moon The first word spoken on the surface of the Moon after Apollo 15 landed on July 30, 1971, was “Bam!” This was James Irwin’s involuntary reaction to their rather bone-jarring touchdown. “We did hit harder than any of the other flights!” says Irwin. “And I was startled, obviously, when I said. Bam!’" The reason for the “firm touchdown” of Apollo 15, as pilot David Scott later characterized it, was that the rocket engine was shut off a bit earlier than planned, when the lander was still 4.30 ft above the lunar surface and moving downward with a speed of 0.500 ft/s. From that point on the lander descended in lunar free fall, with an acceleration of 1.62 m/s 2 . As a result, the landing speed of Apollo 15 was by far the largest of any of the Apollo missions In comparison, Neil Armstrong s landing speed on Apollo 11 was the lowest at 1.7 ft/s—he didn’t shut off the engine until the footpads were actually on the surface. Apollos 12 , 14 , and 17 all landed with speeds between 3.0 and 3.5 ft/s. To better understand the descent of Apollo 15, we show its trajectory during the final stages of landing in Figure 2-47 (a) In Figure 2-47 (b) we show a variety of speed-versus-time plots. (a) (b) FIGURE 2-4 7 Problems 108, 109, 110, and 111 111. • Suppose, instead of shutting off the engine, the astronauts had increased its thrust, giving the lander a small, but constant, upward acceleration. Which speed-versus-time plot in Figure 2-48 (b) would describe this situation? A B C D
The first word spoken on the surface of the Moon after Apollo 15 landed on July 30, 1971, was “Bam!” This was James Irwin’s involuntary reaction to their rather bone-jarring touchdown. “We did hit harder than any of the other flights!” says Irwin. “And I was startled, obviously, when I said. Bam!’"
The reason for the “firm touchdown” of Apollo 15, as pilot David Scott later characterized it, was that the rocket engine was shut off a bit earlier than planned, when the lander was still 4.30 ft above the lunar surface and moving downward with a speed of 0.500 ft/s. From that point on the lander descended in lunar free fall, with an acceleration of 1.62 m/s2. As a result, the landing speed of Apollo 15 was by far the largest of any of the Apollo missions In comparison, Neil Armstrong s landing speed on Apollo 11 was the lowest at 1.7 ft/s—he didn’t shut off the engine until the footpads were actually on the surface. Apollos 12, 14, and 17 all landed with speeds between 3.0 and 3.5 ft/s.
To better understand the descent of Apollo 15, we show its trajectory during the final stages of landing in Figure 2-47 (a) In Figure 2-47 (b) we show a variety of speed-versus-time plots.
(a)
(b)
FIGURE 2-47
Problems 108, 109, 110, and 111
111. • Suppose, instead of shutting off the engine, the astronauts had increased its thrust, giving the lander a small, but constant, upward acceleration. Which speed-versus-time plot in Figure 2-48 (b) would describe this situation?
How can you tell which vowel is being produced here ( “ee,” “ah,” or “oo”)? Also, how would you be able to tell for the other vowels?
You want to fabricate a soft microfluidic chip like the one below. How would you go about
fabricating this chip knowing that you are targeting a channel with a square cross-sectional
profile of 200 μm by 200 μm. What materials and steps would you use and why? Disregard the
process to form the inlet and outlet.
Square Cross Section
1. What are the key steps involved in the fabrication of a semiconductor device.
2. You are hired by a chip manufacturing company, and you are asked to prepare a silicon wafer
with the pattern below. Describe the process you would use.
High Aspect
Ratio
Trenches
Undoped Si Wafer
P-doped Si
3. You would like to deposit material within a high aspect ratio trench. What approach would you
use and why?
4. A person is setting up a small clean room space to carry out an outreach activity to educate high
school students about patterning using photolithography. They obtained a positive photoresist, a
used spin coater, a high energy light lamp for exposure and ordered a plastic transparency mask
with a pattern on it to reduce cost. Upon trying this set up multiple times they find that the full
resist gets developed, and they are unable to transfer the pattern onto the resist. Help them
troubleshoot and find out why pattern of transfer has not been successful.
5. You are given a composite…
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.