Concept explainers
(a)
To draw: The important resonating structures of the given cation.
Interpretation: The important resonating structures of the given cation are to be drawn.
Concept introduction: Resonance is the process in which a molecule gets different structures to define its bonding within the molecule. Such molecules cannot be represented in single Lewis structures. Resonating structures of such molecules are called contributing structures. In the process of resonance, shifting of lone pairs occur with the bonds and other lone pairs. Positive and negative charges decide the high or low electron density areas.
Large conjugation of lone pairs, double bond, triple bond and charge on atoms enhances the resonance.
(b)
To draw: The important resonating structures of the given cation.
Interpretation: The important resonating structures of the given cation are to be drawn.
Concept introduction: Resonance is the process in which a molecule gets different structures to define its bonding within the molecule. Such molecules cannot be represented in single Lewis structures. Resonating structures of such molecules are called contributing structures. In the process of resonance shifting of lone pairs occur with the bonds and other lone pairs. Positive and negative charges decide the high or low electron density areas.
Large conjugation of lone pairs, double bond, triple bond and charge on atoms enhances the resonance.
(c)
To draw: The important resonating structures of the given cation.
Interpretation: The important resonating structures of the given cation are to be drawn.
Concept introduction: Resonance is the process in which a molecule gets different structures to define its bonding within the molecule. Such molecules cannot be represented in single Lewis structures. Resonating structures of such molecules are called contributing structures. In the process of resonance shifting of lone pairs occur with the bonds and other lone pairs. Positive and negative charges decide the high or low electron density areas.
Large conjugation of lone pairs, double bond, triple bond and charge on atoms enhances the resonance.
(d)
To draw: The important resonating structures of the given anion.
Interpretation: The important resonating structures of the given anion are to be drawn.
Concept introduction: Resonance is the process in which a molecule gets different structures to define its bonding within the molecule. Such molecules cannot be represented in single Lewis structures. Resonating structures of such molecules are called contributing structures. In the process of resonance shifting of lone pairs occur with the bonds and other lone pairs. Positive and negative charges decide the high or low electron density areas.
Large conjugation of lone pairs, double bond, triple bond and charge on atoms enhances the resonance.
(e)
To draw: The important resonating structures of the given anion.
Interpretation: The important resonating structures of the given anion are to be drawn.
Concept introduction: Resonance is the process in which a molecule gets different structures to define its bonding within the molecule. Such molecules cannot be represented in single Lewis structures. Resonating structures of such molecules are called contributing structures. In the process of resonance shifting of lone pairs occur with the bonds and other lone pairs. Positive and negative charges decide the high or low electron density areas.
Large conjugation of lone pairs, double bond, triple bond and charge on atoms enhances the resonance.
(f)
To draw: The important resonating structures of the given anion.
Interpretation: The important resonating structures of the given anion are to be drawn.
Concept introduction: Resonance is the process in which a molecule gets different structures to define its bonding within the molecule. Such molecules cannot be represented in single Lewis structures. Resonating structures of such molecules are called contributing structures. In the process of resonance shifting of lone pairs occur with the bonds and other lone pairs. Positive and negative charges decide the high or low electron density areas.
Large conjugation of lone pairs, double bond, triple bond and charge on atoms enhances the resonance.
![Check Mark](/static/check-mark.png)
Trending nowThis is a popular solution!
![Blurred answer](/static/blurred-answer.jpg)
Chapter 1 Solutions
EP ORGANIC CHEMISTRY -MOD.MASTERING 18W
- 2. Please fill in missing reactants, reagents, reaction conditions, or products in the provided blank boxes OMe ...-CF2-CF2-CF2-CF2-CF2-...arrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forwardI don't understand what to put for final step. Does that just mean termination? And would a radical form when I add bromine to ch2 between the rings?arrow_forward
- H2SO4 (cat.), H₂O 100 °C NH₂arrow_forwardX Draw the major products of the elimination reaction below. If elimination would not occur at a significant rate, check the box under the drawing area instead. ది www. Cl + OH Elimination will not occur at a significant rate. Click and drag to start drawing a structure.arrow_forwardNonearrow_forward
- 1A H 2A Li Be Use the References to access important values if needed for this question. 8A 3A 4A 5A 6A 7A He B C N O F Ne Na Mg 3B 4B 5B 6B 7B 8B-1B 2B Al Si P 1B 2B Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe * Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Rf Ha ****** Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Analyze the following reaction by looking at the electron configurations given below each box. Put a number and a symbol in each box to show the number and kind of the corresponding atom or ion. Use the smallest integers possible. cation anion + + Shell 1: 2 Shell 2: 8 Shell 3: 1 Shell 1 : 2 Shell 2 : 6 Shell 1 : 2 Shell 2: 8 Shell 1: 2 Shell 2: 8arrow_forwardNonearrow_forwardIV. Show the detailed synthesis strategy for the following compounds. a. CH3CH2CH2CH2Br CH3CH2CCH2CH2CH3arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534420123/9780534420123_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305580343/9781305580343_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133611097/9781133611097_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079243/9781305079243_smallCoverImage.gif)