Concept explainers
(a)
To draw: The complete Lewis structure for pyridine.
Interpretation: The complete Lewis structure for pyridine is to be drawn.
Concept introduction: The Lewis structure shows the connectivity between atoms by identifying the lone pairs of electrons in a compound. Lewis structures are also called Lewis dot structures. The valence electrons around an atom are shown by dots. Bonds between atoms are shown by lines and the lone pair of electrons is shown by a pair of dots.
The rules to draw Lewis structure are given as,
- Determine the electronegativity and the number of valence electrons contributed by each atom.
- Generally lowest electronegativity atom is the central atom.
- Write the skeleton structure of the molecule.
- Use two valence electrons to form each bond in skeleton structure between the central and outer atoms.
- Satisfy the octets of atoms by distributing remaining valence electrons as nonbonding electrons. It is usually best start with the outer atoms.
(b)
To draw: The complete Lewis structure for pyrrolidine.
Interpretation: The complete Lewis structure for pyrrolidine is to be drawn.
Concept introduction: The Lewis structure shows the connectivity between atoms by identifying the lone pairs of electrons in a compound. Lewis structures are also called Lewis dot structures. The valence electrons around an atom are shown by dots. Bonds between atoms are shown by lines and the lone pair of electrons is shown by a pair of dots.
The rules to draw Lewis structure are given as,
- Determine the electronegativity and the number of valence electrons contributed by each atom.
- Generally lowest electronegativity atom is the central atom.
- Write the skeleton structure of the molecule.
- Use two valence electrons to form each bond in skeleton structure between the central and outer atoms.
- Satisfy the octets of atoms by distributing remaining valence electrons as nonbonding electrons. It is usually best start with the outer atoms.
(c)
To draw: The complete Lewis structure for furan.
Interpretation: The complete Lewis structure for furan is to be drawn.
Concept introduction: The Lewis structure shows the connectivity between atoms by identifying the lone pairs of electrons in a compound. Lewis structures are also called Lewis dot structures. The valence electrons around an atom are shown by dots. Bonds between atoms are shown by lines and the lone pair of electrons is shown by a pair of dots.
The rules to draw Lewis structure are given as,
- Determine the electronegativity and the number of valence electrons contributed by each atom.
- Generally lowest electronegativity atom is the central atom.
- Write the skeleton structure of the molecule.
- Use two valence electrons to form each bond in skeleton structure between the central and outer atoms.
- Satisfy the octets of atoms by distributing remaining valence electrons as nonbonding electrons. It is usually best start with the outer atoms.
(d)
To draw: The complete Lewis structure for
Interpretation: The complete Lewis structure for
Concept introduction: The Lewis structure shows the connectivity between atoms by identifying the lone pairs of electrons in a compound. Lewis structures are also called Lewis dot structures. The valence electrons around an atom are shown by dots. Bonds between atoms are shown by lines and the lone pair of electrons is shown by a pair of dots.
The rules to draw Lewis structure are given as,
- Determine the electronegativity and the number of valence electrons contributed by each atom.
- Generally lowest electronegativity atom is the central atom.
- Write the skeleton structure of the molecule.
- Use two valence electrons to form each bond in skeleton structure between the central and outer atoms.
- Satisfy the octets of atoms by distributing remaining valence electrons as nonbonding electrons. It is usually best start with the outer atoms.
(e)
To draw: The complete Lewis structure for the given compound.
Interpretation: The complete Lewis structure for the given compound is to be drawn.
Concept introduction: The Lewis structure shows the connectivity between atoms by identifying the lone pairs of electrons in a compound. Lewis structures are also called Lewis dot structures. The valence electrons around an atom are shown by dots. Bonds between atoms are shown by lines and the lone pair of electrons is shown by a pair of dots.
The rules to draw Lewis structure are given as,
- Determine the electronegativity and the number of valence electrons contributed by each atom.
- Generally lowest electronegativity atom is the central atom.
- Write the skeleton structure of the molecule.
- Use two valence electrons to form each bond in skeleton structure between the central and outer atoms.
- Satisfy the octets of atoms by distributing remaining valence electrons as nonbonding electrons. It is usually best start with the outer atoms.
(f)
To draw: The complete Lewis structure for the given compound.
Interpretation: The complete Lewis structure for the given compound is to be drawn.
Concept introduction: The Lewis structure shows the connectivity between atoms by identifying the lone pairs of electrons in a compound. Lewis structures are also called Lewis dot structures. The valence electrons around an atom are shown by dots. Bonds between atoms are shown by lines and the lone pair of electrons is shown by a pair of dots.
The rules to draw Lewis structure are given as,
- Determine the electronegativity and the number of valence electrons contributed by each atom.
- Generally lowest electronegativity atom is the central atom.
- Write the skeleton structure of the molecule.
- Use two valence electrons to form each bond in skeleton structure between the central and outer atoms.
- Satisfy the octets of atoms by distributing remaining valence electrons as nonbonding electrons. It is usually best start with the outer atoms.
(g)
To draw: The complete Lewis structure for the given compound.
Interpretation: The complete Lewis structure for the given compound is to be drawn.
Concept introduction: The Lewis structure shows the connectivity between atoms by identifying the lone pairs of electrons in a compound. Lewis structures are also called Lewis dot structures. The valence electrons around an atom are shown by dots. Bonds between atoms are shown by lines and the lone pair of electrons is shown by a pair of dots.
The rules to draw Lewis structure are given as,
- Determine the electronegativity and the number of valence electrons contributed by each atom.
- Generally lowest electronegativity atom is the central atom.
- Write the skeleton structure of the molecule.
- Use two valence electrons to form each bond in skeleton structure between the central and outer atoms.
- Satisfy the octets of atoms by distributing remaining valence electrons as nonbonding electrons. It is usually best start with the outer atoms.
(h)
To draw: The complete Lewis structure for the given compound.
Interpretation: The complete Lewis structure for the given compound is to be drawn.
Concept introduction: The Lewis structure shows the connectivity between atoms by identifying the lone pairs of electrons in a compound. Lewis structures are also called Lewis dot structures. The valence electrons around an atom are shown by dots. Bonds between atoms are shown by lines and the lone pair of electrons is shown by a pair of dots.
The rules to draw Lewis structure are given as,
- Determine the electronegativity and the number of valence electrons contributed by each atom.
- Generally lowest electronegativity atom is the central atom.
- Write the skeleton structure of the molecule.
- Use two valence electrons to form each bond in skeleton structure between the central and outer atoms.
- Satisfy the octets of atoms by distributing remaining valence electrons as nonbonding electrons. It is usually best start with the outer atoms.

Want to see the full answer?
Check out a sample textbook solution
Chapter 1 Solutions
EP ORGANIC CHEMISTRY -MOD.MASTERING 18W
- What are the retrosynthesis and forward synthesis of these reactions?arrow_forwardWhich of the given reactions would form meso product? H₂O, H2SO4 III m CH3 CH₂ONa CH3OH || H₂O, H2SO4 CH3 1. LiAlH4, THF 2. H₂O CH3 IVarrow_forwardWhat is the major product of the following reaction? O IV III HCI D = III ა IVarrow_forward
- The reaction of what nucleophile and substrate is represented by the following transition state? CH3 CH3O -Br อ δ CH3 Methanol with 2-bromopropane Methanol with 1-bromopropane Methoxide with 1-bromopropane Methoxide with 2-bromopropanearrow_forwardWhat is the stepwise mechanism for this reaction?arrow_forward32. Consider a two-state system in which the low energy level is 300 J mol 1 and the higher energy level is 800 J mol 1, and the temperature is 300 K. Find the population of each level. Hint: Pay attention to your units. A. What is the partition function for this system? B. What are the populations of each level? Now instead, consider a system with energy levels of 0 J mol C. Now what is the partition function? D. And what are the populations of the two levels? E. Finally, repeat the second calculation at 500 K. and 500 J mol 1 at 300 K. F. What do you notice about the populations as you increase the temperature? At what temperature would you expect the states to have equal populations?arrow_forward
- 30. We will derive the forms of the molecular partition functions for atoms and molecules shortly in class, but the partition function that describes the translational and rotational motion of a homonuclear diatomic molecule is given by Itrans (V,T) = = 2πmkBT h² V grot (T) 4π²IKBT h² Where h is Planck's constant and I is molecular moment of inertia. The overall partition function is qmolec Qtrans qrot. Find the energy, enthalpy, entropy, and Helmholtz free energy for the translational and rotational modes of 1 mole of oxygen molecules and 1 mole of iodine molecules at 50 K and at 300 K and with a volume of 1 m³. Here is some useful data: Moment of inertia: I2 I 7.46 x 10- 45 kg m² 2 O2 I 1.91 x 101 -46 kg m²arrow_forwardK for each reaction step. Be sure to account for all bond-breaking and bond-making steps. HI HaC Drawing Arrows! H3C OCH3 H 4 59°F Mostly sunny H CH3 HO O CH3 'C' CH3 Select to Add Arrows CH3 1 L H&C. OCH3 H H H H Select to Add Arrows Q Search Problem 30 of 20 H. H3C + :0: H CH3 CH3 20 H2C Undo Reset Done DELLarrow_forwardDraw the principal organic product of the following reaction.arrow_forward
- Curved arrows are used to illustrate the flow of electrons. Using the provided structures, draw the curved arrows that epict the mechanistic steps for the proton transfer between a hydronium ion and a pi bond. Draw any missing organic structures in the empty boxes. Be sure to account for all lone-pairs and charges as well as bond-breaking and bond-making steps. 2 56°F Mostly cloudy F1 Drawing Arrows > Q Search F2 F3 F4 ▷11 H. H : CI: H + Undo Reset Done DELLarrow_forwardCalculate the chemical shifts in 13C and 1H NMR for 4-chloropropiophenone ? Write structure and label hydrogens and carbons. Draw out the benzene ring structure when doing itarrow_forward1) Calculate the longest and shortest wavelengths in the Lyman and Paschen series. 2) Calculate the ionization energy of He* and L2+ ions in their ground states. 3) Calculate the kinetic energy of the electron emitted upon irradiation of a H-atom in ground state by a 50-nm radiation.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning
- Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning



