VECTOR MECHANIC
VECTOR MECHANIC
12th Edition
ISBN: 9781264095032
Author: BEER
Publisher: MCGRAW-HILL HIGHER EDUCATION
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 19.3, Problem 19.89P

(a)

To determine

The frequency (fn) of small oscillation for a is equal to 0.5 m.

(a)

Expert Solution
Check Mark

Answer to Problem 19.89P

The frequency (fn) of small oscillation for a is equal to 0.5 m is 0.802Hz_.

Explanation of Solution

Given information:

The mass (mS) of the sphere is 2 kg.

The mass (mABC) of the bar ABC is 1.5 kg.

The length (l) of the bar is 0.7 m.

The spring constant (k) is 200N/m.

The value of a is 0.5 m.

Assume the acceleration due to gravity (g) as 9.81m/s2.

Calculation:

Show the position 1 and position 2 of the system as in Figure (1).

VECTOR MECHANIC, Chapter 19.3, Problem 19.89P

For position 1(Maximum velocity):

Calculate the mass moment of inertia bar ABC (IABC) using the relation:

IABC=112mABCl2

Substitute 1.5 kg for mABC and 0.7 m for l.

IABC=112×1.5×(0.7)2=0.06125kgm2

Write the expression the maximum velocity of sphere (vS)m:

(vS)m=lθ˙m

Write the expression the maximum velocity of rod ABC (vABC):

vABC=l2θ˙m

Write the expression for the kinetic energy (T1):

T1=12mS(vS)m2+12(IABC)θ˙m2+12mABC(vABC)m2

Substitute 2 kg for mS, lθ˙m for (vS)m, 0.06125kgm2 for IABC, 1.5 kg for mABC, l2θ˙m for vABC, and 0.7 m for l.

T1=12×2×(0.72θ˙m2)+12(0.06125)θ˙m2+12×1.5×(0.72)2θ˙m2=[0.49+0.030625+0.091875]θ˙m2=0.6125θ˙m2

Write the expression for the potential energy (V1):

V1=0

For position 2:

Write the expression for the kinetic energy (T2):

T2=0

Write the expression for the displacement in sphere (hS):

hS=(llcosθm)=l(1cosθm)((1cosθm=2sin2θm2))=l2sin2θm2

For small oscillation 2sin2θm2θm22.

hS=lθm22

Write the expression for the displacement of rod ABC (hABC):

hABC=(l2l2cosθm)=l2(1cosθm)((1cosθm=2sin2θm2))=l22sin2θm2

For small oscillation 2sin2θm2θm22.

hABC=l2θm22

Write the expression for the displacement of spring (xm):

xm=asinθm

For small angle sinθmθm.

xm=aθm

Write the expression for the potential energy (V2):

V2=12kxm2mSghSmABCghABC

Substitute aθm for xm, l2θm22 for hABC, and lθm22 for hS.

V2=12k(aθm)2mSg(lθm22)mABCg(l2θm22)

Substitute 200N/m for k, 0.7 m for l, 2 kg for mS, 1.5 kg for mABC, and 9.81m/s2 for g.

V2=12×200×(aθm)22×9.81×(0.7×θm22)1.5×9.81×(0.72θm22)=100a2θm26.867θm22.575θm2=(100a29.442)θm2

Express the term (θ˙m):

θ˙m=ωnθm

Write the expression for the conservation of energy

T1+V1=T2+V2

Substitute 0.6125θ˙m2 for T1, 0 for V1, 0 for T2 and (100a29.442)θm2 for V2.

0.6125θ˙m2+0=0+(100a29.442)θm20.6125θ˙m2=(100a29.442)θm2

Substitute ωnθm for θ˙m.

0.6125ωn2θm2=(100a29.442)θm2ωn2=(100a29.442)0.6125 (1)

Substitute 0.5 m for a in Equation (1).

ωn2=(100(0.5)29.442)0.6125ωn=25.401ωn=5.0399rad/s

Calculate the frequency (τn) of small vibration using the relation:

fn=ωn2π

Substitute 5.0399rad/s for ωn.

fn=5.03992π=0.802Hz

Therefore, the frequency (fn) of small oscillation for a is equal to 0.5 m is 0.802Hz_.

(b)

To determine

The smallest value of a for which oscillation will occur.

(b)

Expert Solution
Check Mark

Answer to Problem 19.89P

The smallest value of a for which oscillation will occur is 0.307m_.

Explanation of Solution

Given information:

The mass (mS) of the sphere is 2 kg.

The mass (mABC) of the bar ABC is 1.5 kg.

The length (l) of the bar is 0.7 m.

The spring constant (k) is 200N/m.

The value of a is 0.5 m.

Assuming the acceleration due to gravity (g) as 9.81m/s2.

Calculation:

Calculate the value of a:

Substitute 0 for ωn in Equation (1).

0=(100a29.442)0.61250=100a29.442a2=9.442100a=0.09442a=0.307m

Therefore, the smallest value of a for which oscillation will occur is 0.307m_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Q1/ A vertical, circular gate with water on one side as shown. Determine the total resultant force acting on the gate and the location of the center of pressure, use water specific weight 9.81 kN/m³ 1 m 4 m
I need handwritten solution with sketches for each
Given answers to be: i) 14.65 kN; 6.16 kN; 8.46 kN ii) 8.63 kN; 9.88 kN iii) Bearing 6315 for B1 & B2, or Bearing 6215 for B1

Chapter 19 Solutions

VECTOR MECHANIC

Ch. 19.1 - Prob. 19.11PCh. 19.1 - Prob. 19.12PCh. 19.1 - Prob. 19.13PCh. 19.1 - Prob. 19.14PCh. 19.1 - A 5-kg collar C is released from rest in the...Ch. 19.1 - Prob. 19.16PCh. 19.1 - Prob. 19.17PCh. 19.1 - An 11-lb block is attached to the lower end of a...Ch. 19.1 - Block A has a mass m and is supported by the...Ch. 19.1 - A 13.6-kg block is supported by the spring...Ch. 19.1 - Prob. 19.21PCh. 19.1 - 19.21 and 19.22A 50-kg block is supported by the...Ch. 19.1 - Prob. 19.23PCh. 19.1 - The period of vibration of the system shown is...Ch. 19.1 - Prob. 19.25PCh. 19.1 - Prob. 19.26PCh. 19.1 - From mechanics of materials, it is known that for...Ch. 19.1 - From mechanics of materials it is known that when...Ch. 19.1 - Prob. 19.29PCh. 19.1 - Prob. 19.30PCh. 19.1 - If h = 700 mm and d = 500 mm and each spring has a...Ch. 19.1 - Prob. 19.32PCh. 19.1 - Prob. 19.33PCh. 19.1 - Prob. 19.34PCh. 19.1 - Prob. 19.35PCh. 19.1 - Prob. 19.36PCh. 19.2 - The 9-kg uniform rod AB is attached to springs at...Ch. 19.2 - Prob. 19.38PCh. 19.2 - Prob. 19.39PCh. 19.2 - Prob. 19.40PCh. 19.2 - A 15-lb slender rod AB is riveted to a 12-lb...Ch. 19.2 - A 20-lb uniform cylinder can roll without sliding...Ch. 19.2 - A square plate of mass m is held by eight springs,...Ch. 19.2 - Prob. 19.44PCh. 19.2 - Prob. 19.45PCh. 19.2 - A three-blade wind turbine used for research is...Ch. 19.2 - A connecting rod is supported by a knife-edge at...Ch. 19.2 - A semicircular hole is cut in a uniform square...Ch. 19.2 - A uniform disk of radius r = 250 mm is attached at...Ch. 19.2 - A small collar of mass 1 kg is rigidly attached to...Ch. 19.2 - Prob. 19.51PCh. 19.2 - Prob. 19.52PCh. 19.2 - Prob. 19.53PCh. 19.2 - Prob. 19.54PCh. 19.2 - The 8-kg uniform bar AB is hinged at C and is...Ch. 19.2 - Prob. 19.56PCh. 19.2 - Prob. 19.57PCh. 19.2 - Prob. 19.58PCh. 19.2 - Prob. 19.59PCh. 19.2 - Prob. 19.60PCh. 19.2 - Two uniform rods, each of weight W = 24 lb and...Ch. 19.2 - A homogeneous rod of mass per unit length equal to...Ch. 19.2 - Prob. 19.63PCh. 19.2 - Prob. 19.64PCh. 19.2 - A 60-kg uniform circular plate is welded to two...Ch. 19.2 - Prob. 19.66PCh. 19.2 - Prob. 19.67PCh. 19.2 - The centroidal radius of gyration ky of an...Ch. 19.3 - Two blocks each have a mass 1.5 kg and are...Ch. 19.3 - Prob. 19.70PCh. 19.3 - Prob. 19.71PCh. 19.3 - Prob. 19.72PCh. 19.3 - Prob. 19.73PCh. 19.3 - Prob. 19.74PCh. 19.3 - Prob. 19.75PCh. 19.3 - Prob. 19.76PCh. 19.3 - Prob. 19.77PCh. 19.3 - Blade AB of the experimental wind-turbine...Ch. 19.3 - A 15-lb uniform cylinder can roll without sliding...Ch. 19.3 - Prob. 19.80PCh. 19.3 - Prob. 19.81PCh. 19.3 - Prob. 19.82PCh. 19.3 - Prob. 19.83PCh. 19.3 - Prob. 19.84PCh. 19.3 - A homogeneous rod of weight W and length 2l is...Ch. 19.3 - A 10-lb uniform rod CD is welded at C to a shaft...Ch. 19.3 - Prob. 19.87PCh. 19.3 - Prob. 19.88PCh. 19.3 - Prob. 19.89PCh. 19.3 - Prob. 19.90PCh. 19.3 - Prob. 19.91PCh. 19.3 - Prob. 19.92PCh. 19.3 - Prob. 19.93PCh. 19.3 - A uniform rod of length L is supported by a...Ch. 19.3 - Prob. 19.95PCh. 19.3 - Three collars each have a mass m and are connected...Ch. 19.3 - Prob. 19.97PCh. 19.3 - As a submerged body moves through a fluid, the...Ch. 19.4 - A 4-kg collar can slide on a frictionless...Ch. 19.4 - Prob. 19.100PCh. 19.4 - A collar with mass m that slides on a frictionless...Ch. 19.4 - Prob. 19.102PCh. 19.4 - The 1.2-kg bob of a simple pendulum of length l =...Ch. 19.4 - Prob. 19.104PCh. 19.4 - A precision experiment sits on an optical table...Ch. 19.4 - Prob. 19.106PCh. 19.4 - Prob. 19.107PCh. 19.4 - The crude-oil pumping rig shown is driven at 20...Ch. 19.4 - Prob. 19.109PCh. 19.4 - Prob. 19.110PCh. 19.4 - Prob. 19.111PCh. 19.4 - Rod AB is rigidly attached to the frame of a motor...Ch. 19.4 - Prob. 19.113PCh. 19.4 - Prob. 19.114PCh. 19.4 - A motor of weight 100 lb is supported by four...Ch. 19.4 - Prob. 19.116PCh. 19.4 - Prob. 19.117PCh. 19.4 - Prob. 19.118PCh. 19.4 - Prob. 19.119PCh. 19.4 - One of the tail rotor blades of a helicopter has...Ch. 19.4 - Prob. 19.121PCh. 19.4 - Prob. 19.122PCh. 19.4 - Prob. 19.123PCh. 19.4 - Prob. 19.124PCh. 19.4 - A 60-lb disk is attached with an eccentricity e =...Ch. 19.4 - A small trailer and its load have a total mass of...Ch. 19.5 - Prob. 19.127PCh. 19.5 - Prob. 19.128PCh. 19.5 - Prob. 19.129PCh. 19.5 - Prob. 19.130PCh. 19.5 - Prob. 19.131PCh. 19.5 - Prob. 19.132PCh. 19.5 - Prob. 19.133PCh. 19.5 - Prob. 19.134PCh. 19.5 - Prob. 19.135PCh. 19.5 - Prob. 19.136PCh. 19.5 - Prob. 19.137PCh. 19.5 - Prob. 19.138PCh. 19.5 - A machine element weighing 500 lb is supported by...Ch. 19.5 - Prob. 19.140PCh. 19.5 - Prob. 19.141PCh. 19.5 - Prob. 19.142PCh. 19.5 - Prob. 19.143PCh. 19.5 - A 36-lb motor is bolted to a light horizontal beam...Ch. 19.5 - One of the tail rotor blades of a helicopter has...Ch. 19.5 - Prob. 19.146PCh. 19.5 - Prob. 19.147PCh. 19.5 - Prob. 19.148PCh. 19.5 - Prob. 19.149PCh. 19.5 - Prob. 19.150PCh. 19.5 - The suspension of an automobile can be...Ch. 19.5 - Prob. 19.152PCh. 19.5 - Prob. 19.153PCh. 19.5 - Prob. 19.154PCh. 19.5 - 19.155 and 19.156 Draw the electrical analog of...Ch. 19.5 - Prob. 19.156PCh. 19.5 - 19.157 and 19.158Write the differential equations...Ch. 19.5 - 19.157 and 19.158Write the differential equations...Ch. 19 - An automobile wheel-and-tire assembly of total...Ch. 19 - Prob. 19.160RPCh. 19 - Disks A and B weigh 30 lb and 12 lb, respectively,...Ch. 19 - A small trailer and its load have a total mass of...Ch. 19 - A 0.8-lb ball is connected to a paddle by means of...Ch. 19 - Prob. 19.164RPCh. 19 - A 4-lb uniform rod is supported by a pin at O and...Ch. 19 - Prob. 19.166RPCh. 19 - Prob. 19.167RPCh. 19 - A small ball of mass m attached at the midpoint of...Ch. 19 - Prob. 19.169RPCh. 19 - If either a simple or a compound pendulum is used...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Introduction to Undamped Free Vibration of SDOF (1/2) - Structural Dynamics; Author: structurefree;https://www.youtube.com/watch?v=BkgzEdDlU78;License: Standard Youtube License