Engineering Mechanics: Dynamics, Study Pack, Si Edition
14th Edition
ISBN: 9781292171944
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 19.2, Problem 19P
The double pulley consists of two wheels which are attached to one another and turn at the same rate. The pulley has a mass of 15 kg and a radius of gyration ko = 110 mm. If the block at A has a mass of 40 kg, determine the speed of the block in 3 s after a constant force F = 2 kN is applied to the rope wrapped around the inner hub of the pulley. The block is originally at rest Neglect the mass of the rope.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
११११११११
TABLE
Much
160,000kg
Croll
0,005
CD
Ap Par
ng
При nchs
0.15
5m² 1.2kg/m³ 0.98 0.9
0,98 0,9 0,88
IF
20
10
to add
The train is going to make several stops along its journey.
It will be important for the train to accelerate
quickdy to get back up to speed. In order to get
Tesla Model S motors until we get the combined
The Forque and power needed we are goins bined
power and forque needed to accelerate from 0 to
324 km/hr in less than 5 Minutes.
Tesla Prated
270 kW
Tesla Trated Twheel ng Jaxle
440 NM
20 8.5kgm²
0.45M
a) What is the minimum whole number of Tesla Motors
required to achieve accelerate the train from
0 to 324 km/hr in less than 5 Nnutes? Seperate the
acceleration into constant torque and constant
power
0.
b) How long does it take the train to accelerate
from 0 to 324 km/hr with the number of Tesla
motors from part a?
c) Using Matlab plot the relocity profile as a
function of time, Is this a constant
acceleration profile?
B
Example find f(t)?
-4s
F(s)=
(s² + 4)²
draw a kinematic diagram
Chapter 19 Solutions
Engineering Mechanics: Dynamics, Study Pack, Si Edition
Ch. 19.2 - Determine the angular momentum of the 100-kg disk...Ch. 19.2 - Determine the angular impulse about point O for t...Ch. 19.2 - If it is subjected to a couple moment of M = (3t2)...Ch. 19.2 - The 300-kg wheel has a rad1us of gyration about...Ch. 19.2 - If rod OA of negligible mass is subjected lo the...Ch. 19.2 - Gears A and B of mass 10 kg and 50 kg have radii...Ch. 19.2 - The 50-kg spool is subjected to a horizontal force...Ch. 19.2 - The reel has a weight of 150 lb and a radius of...Ch. 19.2 - The rigid body (slab) has a mass m and rotates...Ch. 19.2 - At a given Instant, the body has a linear momentum...
Ch. 19.2 - Show that if a slab is rotating about a fixed axis...Ch. 19.2 - The 40-kg disk is rotating at = 100 rad/s. When...Ch. 19.2 - The Impact wrench cons1sts of a slender 1-kg rod...Ch. 19.2 - The airplane is traveling in a straight line with...Ch. 19.2 - The double pulley consists of two wheels which are...Ch. 19.2 - The assembly weighs 10 lb and has a radius of...Ch. 19.2 - The disk has a weight of 10 lb and is pinned at...Ch. 19.2 - The 30-kg gear A has a radius of gyration about...Ch. 19.2 - Determine the angular velocity of the pulley when...Ch. 19.2 - The 40-kg roll of paper rests along the wall where...Ch. 19.2 - The slender rod has a mass m and is suspended at...Ch. 19.2 - The rod of length L and mass m lies on a smooth...Ch. 19.2 - A 4-kg disk A is mounted on arm BC. which has a...Ch. 19.2 - The frame of a tandem drum roller has a weight of...Ch. 19.2 - The 100-lb wheel has a radius of gyration of kG =...Ch. 19.2 - The 4-kg slender rod rests on a smooth floor If it...Ch. 19.2 - The double pulley consists of two wheels which are...Ch. 19.2 - The 100-kg spool is resting on the inclined...Ch. 19.2 - The spool has a weight of 30 lb and a radius of...Ch. 19.2 - The two gears A and B have weights and radii of...Ch. 19.2 - The hoop (thin ring) has a mass of 5 kg and is...Ch. 19.2 - The 30-kg gear is subjected to a force of P =...Ch. 19.2 - The 30-lb flywheel A has a radius of gyration...Ch. 19.2 - If the shaft is subjected to a torque of M = (...Ch. 19.2 - The double pulley consists of two wheels which are...Ch. 19.2 - The crate has a mass mc. Determine the constant...Ch. 19.4 - The turntable T of a record player has a mass of...Ch. 19.4 - The 10-g bullet having a velocity of 800 m/s is...Ch. 19.4 - The 10-g bullet having a velocity of 800 m/s is...Ch. 19.4 - The circular disk has a mass m and is suspended at...Ch. 19.4 - The 80-kg man is holding two dumbbells while...Ch. 19.4 - The platform swing consists of a 200-lb flat plate...Ch. 19.4 - The 2-kg rod ACB supports the two 4-kg disks at...Ch. 19.4 - The satellite has a mass of 200 kg and a radius of...Ch. 19.4 - Disk A has a weight of 20 lb. An inextensible...Ch. 19.4 - The plank has a weight of 30 lb, center of gravity...Ch. 19.4 - The 12-kg rod AB is pinned to the 40-kg disk. If...Ch. 19.4 - A thin rod of mass m has an angular velocity o...Ch. 19.4 - Tests of impact on the fixed crash dummy are...Ch. 19.4 - The vertical shaft is rotating with an angular...Ch. 19.4 - The mass center of the 3-lb ball h3s a velocity of...Ch. 19.4 - Prob. 44PCh. 19.4 - The 10-lb block is sliding on the smooth surface...Ch. 19.4 - Determine the height hat which a billiard ball of...Ch. 19.4 - The pendulum consists of a 15-kg solid ball and...Ch. 19.4 - The 4-lb rod AB is hanging in the vertical...Ch. 19.4 - Determine the largest angular velocity 1 the disk...Ch. 19.4 - The solid ball of mass m is dropped with a...Ch. 19.4 - The wheel has a mass of 50 kg and a radius of...Ch. 19.4 - The wheel has a mass of 50 kg and a radius of...Ch. 19.4 - The rod of mass m and length L is released from...Ch. 19.4 - Prob. 55PCh. 19.4 - A ball having a mass of 8 kg and initial speed of...Ch. 19.4 - A solid ball with a mass m is thrown on the ground...Ch. 19.4 - The pendulum consists of a 10-lb solid ball and...Ch. 19.4 - The cable is subjected to a force of P = (10t2)...Ch. 19.4 - The space capsule has a mass of 1200 kg and a...Ch. 19.4 - The tire has a mass of 9 kg and a rad1us of...Ch. 19.4 - The wheel having a mass of 100 kg and a radius of...Ch. 19.4 - The spool has a weight of 30 lb and a radius of...Ch. 19.4 - Spool B is at rest and spool A is rotating at 6...Ch. 19.4 - A thin disk of mass m has an angular velocity 1...Ch. 19.4 - Prob. 8RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Rigid bodies ENG2016. Full complete solutions need okk don't use guidelines but solve full accurate steps by steps don't use chat gpt or any other ai okkk just solve complete solutions okkk take your time but solve complete solutionsarrow_forwardQuestion 6 I need to show all work step by step dynamicsarrow_forwardQu. 3 The automobile is originally at rest s = 0. If it then starts to increase its speed at i = (0.05t2)ft/s?, where t is in seconds, determine the magnitudes of its velocity and acceleration at s = 550 ft. please show all work from dynamics step by step formulaarrow_forward
- question 5 and 6 from dynamics I need to show all work step by step problemsarrow_forwardStudy Area Document Sharing User Settings Access Pearson mylabmastering.pearson.com P Pearson MyLab and Mastering The crash cushion for a highway barrier consists of a nest of barrels filled with an impact-absorbing material. The barrier stopping force is measured versus the vehicle penetration into the barrier. (Figure 1) Part A P Course Home b My Questions | bartleby Review Determine the distance a car having a weight of 4000 lb will penetrate the barrier if it is originally traveling at 55 ft/s when it strikes the first barrel. Express your answer to three significant figures and include the appropriate units. Figure 1 of 1 36 μΑ S = Value Units Submit Request Answer Provide Feedback ? Next >arrow_forwardWater is the working fluid in an ideal Rankine cycle. Saturated vapor enters the turbine at 12 MPa, and the condenser pressure is 8 kPa. The mass flow rate of steam entering the turbine is 50 kg/s. Determine: (a) the net power developed, in kW. (b) the rate of heat transfer to the steam passing through the boiler, in kW. (c) the percent thermal efficiency. (d) the mass flow rate of condenser cooling water, in kg/s, if the cooling water undergoes a temperature increase of 18°C with negligible pressure change in passing through the condenser.arrow_forward
- 4. The figure below shows a bent pipe with the external loading FA 228 lb, and M₁ = M₂ = 1 kip-ft. The force Fernal loading FA = 300 lb, FB: parallel to the y-axis, and and yc = 60°. = 125 lb, Fc = acts parallel to the x-z plane, the force FB acts Cartesian resultan Coordinate direction angles of Fc are ac = 120°, ẞc = 45°, a. Compute the resultant force vector of the given external loading and express it in EST form. b. Compute the resultant moment vector of the given external loading about the origin, O, and express it in Cartesian vector form. Use the vector method while computing the moments of forces. c. Compute the resultant moment vector of the given external loading about the line OA and express it in Cartesian vector form. :00 PM EST k ghoufran@buffaternal du 2 ft M₁ A 40° FA M2 C 18 in 1 ft Fc 25 houfran@bald.edu - Feb 19, 3 ft FBarrow_forwardThe differential equation of a cruise control system is provided by the following equation: Find the closed loop transfer function with respect to the reference velocity (vr) . a. Find the poles of the closed loop transfer function for different values of K. How does the poles move as you change K? b. Find the step response for different values of K and plot in MATLAB. What can you observe? c. For the given transfer function, find tp, ts, tr, Mp . Plot the resulting step response. G(s) = 40/(s^2 + 4s + 40)arrow_forwardAuto Controls Perform the partial fraction expansion of the following transfer function and find the impulse response: G(s) = (s/2 + 5/3) / (s^2 + 4s + 6) G(s) =( 6s^2 + 50) / (s+3)(s^2 +4)arrow_forward
- Study Area Document Sharing User Settings mylabmastering.pearson.com Access Pearson P Pearson MyLab and Mastering The 150-lb skater passes point A with a speed of 6 ft/s. (Figure 1) Figure 1 of 1 Part A P Course Home b My Questions | bartleby Determine his speed when he reaches point B. Neglect friction. Express your answer to three significant figures and include the appropriate units. με ? VB = Value Units Submit Request Answer Part B Determine the normal force exerted on him by the track at this point. Express your answer to three significant figures and include the appropriate units. ☐ о Α NB = Value Units Submit Request Answer Provide Feedback ? ■Review Next >arrow_forwardmylabmastering.pearson.com Access Pearson P Pearson MyLab and Mastering P Course Home b My Questions | bartleby Study Area Document Sharing User Settings The 100-kg crate is subjected to the forces shown. The crate is originally at rest. The coefficient of kinetic friction between the crate and the surface is μk = 0.2. (Figure 1) Part A Determine the distance it slides in order to attain a speed of 8.1 m/s. Express your answer to three significant figures and include the appropriate units. Figure 500 N 1 of 1 Α S = Value Units Submit Request Answer Provide Feedback ? ■Review Next >arrow_forwardThe differential equation of a DC motor can be described by the following equation Find the transfer function between the applied voltage ( Va)and the motor speed (thetadot m). What is the steady state speed of the motor after a voltage (Va = 10V) has been applied. Find the transfer function between the applied voltage (Va) and the shaft angle (thetadot m) .arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Transmission; Author: Terry Brown Mechanical Engineering;https://www.youtube.com/watch?v=YVm4LNVp1vA;License: Standard Youtube License