VECTOR MECHANICS FOR ENGINEERS W/CON >B
12th Edition
ISBN: 9781260804638
Author: BEER
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 19.1, Problem 19.28P
From
(a)
(b)
Fig. P19.28
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
From mechanics of materials, it is known that for a simply supported beam of uniform cross section, a static load P applied at the center will cause a deflection of δA=PL3/48 EI, where L is the length of the beam, E is the modulus of elasticity, and I is the moment of inertia of the cross-sectional area of the beam. Knowing that L = 15 ft, E = 30 × 106 psi, and I = 2 × 10 3ft4, determine (a) the equivalent spring constant of the beam, (b) the frequency of vibration of a 1500-lb block attached to the center of the beam. Neglect the mass of the beam and assume that the load remains in contact with the beam.
From mechanics of materials it is known that for a cantilever beam of constant cross section a static load P applied at end B will cause a deflection δB = PL3/3EI, where L is the length of the beam, E is the modulus of elasticity, and I is the moment of inertia of the cross-sectional area of the beam. Knowing that L = 10 ft, E = 29 x 106 lb/in2, and I = 12.4 in4, determine (a) the equivalent spring constant of the beam, (b) the frequency of vibration of a 520-lb block attached to end B of the same beam.
A 1.05-m-long rod of negligible weight is supported at its ends by wires A and B of equal length. The cross-sectional area of A is 1.80 mm^2 and that of B is 4.20 mm^2 . Young's modulus for wire A is 2.30×1011 Pa ; that for B is 1.20×1011 Pa .
At what point along the rod should a weight w be suspended to produce equal stresses in A and B? (d=? m from wire A)
At what point along the rod should a weight w be suspended to produce equal strains in A and B? (d=? m from wire A)
Chapter 19 Solutions
VECTOR MECHANICS FOR ENGINEERS W/CON >B
Ch. 19.1 - A particle moves in simple harmonic motion....Ch. 19.1 - A particle moves in simple harmonic motion....Ch. 19.1 - Prob. 19.3PCh. 19.1 - Prob. 19.4PCh. 19.1 - Prob. 19.5PCh. 19.1 - Prob. 19.6PCh. 19.1 - Prob. 19.7PCh. 19.1 - A simple pendulum consisting of a bob attached to...Ch. 19.1 - Prob. 19.9PCh. 19.1 - Prob. 19.10P
Ch. 19.1 - Prob. 19.11PCh. 19.1 - Prob. 19.12PCh. 19.1 - Prob. 19.13PCh. 19.1 - Prob. 19.14PCh. 19.1 - A 5-kg collar C is released from rest in the...Ch. 19.1 - Prob. 19.16PCh. 19.1 - Prob. 19.17PCh. 19.1 - An 11-lb block is attached to the lower end of a...Ch. 19.1 - Block A has a mass m and is supported by the...Ch. 19.1 - A 13.6-kg block is supported by the spring...Ch. 19.1 - Prob. 19.21PCh. 19.1 - 19.21 and 19.22A 50-kg block is supported by the...Ch. 19.1 - Prob. 19.23PCh. 19.1 - The period of vibration of the system shown is...Ch. 19.1 - Prob. 19.25PCh. 19.1 - Prob. 19.26PCh. 19.1 - From mechanics of materials, it is known that for...Ch. 19.1 - From mechanics of materials it is known that when...Ch. 19.1 - Prob. 19.29PCh. 19.1 - Prob. 19.30PCh. 19.1 - If h = 700 mm and d = 500 mm and each spring has a...Ch. 19.1 - Prob. 19.32PCh. 19.1 - Prob. 19.33PCh. 19.1 - Prob. 19.34PCh. 19.1 - Prob. 19.35PCh. 19.1 - Prob. 19.36PCh. 19.2 - The 9-kg uniform rod AB is attached to springs at...Ch. 19.2 - Prob. 19.38PCh. 19.2 - Prob. 19.39PCh. 19.2 - Prob. 19.40PCh. 19.2 - A 15-lb slender rod AB is riveted to a 12-lb...Ch. 19.2 - A 20-lb uniform cylinder can roll without sliding...Ch. 19.2 - A square plate of mass m is held by eight springs,...Ch. 19.2 - Prob. 19.44PCh. 19.2 - Prob. 19.45PCh. 19.2 - A three-blade wind turbine used for research is...Ch. 19.2 - A connecting rod is supported by a knife-edge at...Ch. 19.2 - A semicircular hole is cut in a uniform square...Ch. 19.2 - A uniform disk of radius r = 250 mm is attached at...Ch. 19.2 - A small collar of mass 1 kg is rigidly attached to...Ch. 19.2 - Prob. 19.51PCh. 19.2 - Prob. 19.52PCh. 19.2 - Prob. 19.53PCh. 19.2 - Prob. 19.54PCh. 19.2 - The 8-kg uniform bar AB is hinged at C and is...Ch. 19.2 - Prob. 19.56PCh. 19.2 - Prob. 19.57PCh. 19.2 - Prob. 19.58PCh. 19.2 - Prob. 19.59PCh. 19.2 - Prob. 19.60PCh. 19.2 - Two uniform rods, each of weight W = 24 lb and...Ch. 19.2 - A homogeneous rod of mass per unit length equal to...Ch. 19.2 - Prob. 19.63PCh. 19.2 - Prob. 19.64PCh. 19.2 - A 60-kg uniform circular plate is welded to two...Ch. 19.2 - Prob. 19.66PCh. 19.2 - Prob. 19.67PCh. 19.2 - The centroidal radius of gyration ky of an...Ch. 19.3 - Two blocks each have a mass 1.5 kg and are...Ch. 19.3 - Prob. 19.70PCh. 19.3 - Prob. 19.71PCh. 19.3 - Prob. 19.72PCh. 19.3 - Prob. 19.73PCh. 19.3 - Prob. 19.74PCh. 19.3 - Prob. 19.75PCh. 19.3 - Prob. 19.76PCh. 19.3 - Prob. 19.77PCh. 19.3 - Blade AB of the experimental wind-turbine...Ch. 19.3 - A 15-lb uniform cylinder can roll without sliding...Ch. 19.3 - Prob. 19.80PCh. 19.3 - Prob. 19.81PCh. 19.3 - Prob. 19.82PCh. 19.3 - Prob. 19.83PCh. 19.3 - Prob. 19.84PCh. 19.3 - A homogeneous rod of weight W and length 2l is...Ch. 19.3 - A 10-lb uniform rod CD is welded at C to a shaft...Ch. 19.3 - Prob. 19.87PCh. 19.3 - Prob. 19.88PCh. 19.3 - Prob. 19.89PCh. 19.3 - Prob. 19.90PCh. 19.3 - Prob. 19.91PCh. 19.3 - Prob. 19.92PCh. 19.3 - Prob. 19.93PCh. 19.3 - A uniform rod of length L is supported by a...Ch. 19.3 - Prob. 19.95PCh. 19.3 - Three collars each have a mass m and are connected...Ch. 19.3 - Prob. 19.97PCh. 19.3 - As a submerged body moves through a fluid, the...Ch. 19.4 - A 4-kg collar can slide on a frictionless...Ch. 19.4 - Prob. 19.100PCh. 19.4 - A collar with mass m that slides on a frictionless...Ch. 19.4 - Prob. 19.102PCh. 19.4 - The 1.2-kg bob of a simple pendulum of length l =...Ch. 19.4 - Prob. 19.104PCh. 19.4 - A precision experiment sits on an optical table...Ch. 19.4 - Prob. 19.106PCh. 19.4 - Prob. 19.107PCh. 19.4 - The crude-oil pumping rig shown is driven at 20...Ch. 19.4 - Prob. 19.109PCh. 19.4 - Prob. 19.110PCh. 19.4 - Prob. 19.111PCh. 19.4 - Rod AB is rigidly attached to the frame of a motor...Ch. 19.4 - Prob. 19.113PCh. 19.4 - Prob. 19.114PCh. 19.4 - A motor of weight 100 lb is supported by four...Ch. 19.4 - Prob. 19.116PCh. 19.4 - Prob. 19.117PCh. 19.4 - Prob. 19.118PCh. 19.4 - Prob. 19.119PCh. 19.4 - One of the tail rotor blades of a helicopter has...Ch. 19.4 - Prob. 19.121PCh. 19.4 - Prob. 19.122PCh. 19.4 - Prob. 19.123PCh. 19.4 - Prob. 19.124PCh. 19.4 - A 60-lb disk is attached with an eccentricity e =...Ch. 19.4 - A small trailer and its load have a total mass of...Ch. 19.5 - Prob. 19.127PCh. 19.5 - Prob. 19.128PCh. 19.5 - Prob. 19.129PCh. 19.5 - Prob. 19.130PCh. 19.5 - Prob. 19.131PCh. 19.5 - Prob. 19.132PCh. 19.5 - Prob. 19.133PCh. 19.5 - Prob. 19.134PCh. 19.5 - Prob. 19.135PCh. 19.5 - Prob. 19.136PCh. 19.5 - Prob. 19.137PCh. 19.5 - Prob. 19.138PCh. 19.5 - A machine element weighing 500 lb is supported by...Ch. 19.5 - Prob. 19.140PCh. 19.5 - Prob. 19.141PCh. 19.5 - Prob. 19.142PCh. 19.5 - Prob. 19.143PCh. 19.5 - A 36-lb motor is bolted to a light horizontal beam...Ch. 19.5 - One of the tail rotor blades of a helicopter has...Ch. 19.5 - Prob. 19.146PCh. 19.5 - Prob. 19.147PCh. 19.5 - Prob. 19.148PCh. 19.5 - Prob. 19.149PCh. 19.5 - Prob. 19.150PCh. 19.5 - The suspension of an automobile can be...Ch. 19.5 - Prob. 19.152PCh. 19.5 - Prob. 19.153PCh. 19.5 - Prob. 19.154PCh. 19.5 - 19.155 and 19.156 Draw the electrical analog of...Ch. 19.5 - Prob. 19.156PCh. 19.5 - 19.157 and 19.158Write the differential equations...Ch. 19.5 - 19.157 and 19.158Write the differential equations...Ch. 19 - An automobile wheel-and-tire assembly of total...Ch. 19 - Prob. 19.160RPCh. 19 - Disks A and B weigh 30 lb and 12 lb, respectively,...Ch. 19 - A small trailer and its load have a total mass of...Ch. 19 - A 0.8-lb ball is connected to a paddle by means of...Ch. 19 - Prob. 19.164RPCh. 19 - A 4-lb uniform rod is supported by a pin at O and...Ch. 19 - Prob. 19.166RPCh. 19 - Prob. 19.167RPCh. 19 - A small ball of mass m attached at the midpoint of...Ch. 19 - Prob. 19.169RPCh. 19 - If either a simple or a compound pendulum is used...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- a sheep with a mass of 50 kg is hung on an animal scale system which consists of a helical spring of negligible mass. The stiffness (k) of the spring is 60 kN/m. During the hanging operation, the spring and the sheep are displaced vertically by 20 mm below the equilibrium position. draw a free body diagram and prove that the total length (L) of the scale system can be expressed as : L= (2mg/k) + L0, where L0 is the unstretched length of the spring. also determine the frequency of natural vibration of the system.arrow_forwardA car skidded off an icy road and became stuck in deep snow at the road shoulder. Another car, of 1400 kg mass, attempted to jerk the stuck vehicle back onto the road using a 5 m steel tow cable of stiffness k = 5000 N/mm. The traction available to the rescue car prevented it from exerting any significant force on the cable. With the aid of a push from bystanders, the rescue car was able to back against the stuck car and then go forward and reach a speed of 4 km/h at the instant the cable became taut. If the cable is attached rigidly to the masses of the cars, estimate the maximum impact force that can be developed in the cable, and the resulting cable elongation. Assume that the steady state force, acting on the rope, is equal to the weight of the car.arrow_forward100KN A force of 100 KN is applied on a column as shown. The column is made from two materials. [The top one is a functionally graded material with a linearly varying modulus and densities. Its length is 2 meter. The density and elastic modulus of the top material at point A are 2700 А kg m3 and 72 Gpa, respectively. The density and modulus of kg the top material at point B are 3000 and 100 Gpa. The m 3 В kg bottom material is made from steel (density =7800 and m2 modulus=200GPA). The length of the bottom material is 1m. The cross-sections of both materials comprising the column are cylindrical with a diameter of 0.5 m. C ID (oijj + bị = 0) and considering the weight and the applied force determine: Using equilibrium while The stress distribution in both membersarrow_forward
- Prob.3: [2.26] The length of 2 mm diameter steel wire CD has been adjusted so that with no load is applied, a gap of 1.5 mm exists between the end B of the rigid beam ACB and a contact point E. Knowing that E = 200 GPa, determine where a 20 kg block should be placed on the beam in order to cause contact between B and E. 0.25 m CO 20 kg В A E 1.5 mm -0.32 m 0.08 marrow_forward5. A car is driving down the road and goes over a speed bump. The car has a solid circular drive shaft that is subjected to a tensile axial force of F = 400 kN, a bending moment of M = 10.0 kN·m, and a torque of T = 18.0 kN·m as a result of the bump. The shaft has a diameter d = 10.0 cm and mechanical properties of E = 200 GPa, v = 0.35 and σ = 200 MPa. a. What and where is the maximum stress? Hint: use the principle of superposition. b. What are the principal stresses and their directions? c. If it is a ductile steel, will the shaft yield? d. If it is a brittle steel, will the shaft fail? F M T Marrow_forwardMechanics of Deformable Bodies is the subjectarrow_forward
- Aluminum L= 3 m A = 500 mm² E = 70 GPa A 3.5 m P B Steel L = 4 m A = 300 mm² E = 200 GPa 2.5 m с # 3A. The rigid bar AB, attached to two vertical rods as shown, is horizontal before the load P is applied. Determine the vertical movement of P if its magnitude is 50 kN. #3B. A steel rod is stretched between two rigid walls and carries a tensile load of 5000 N at 20°C. If the allowable stress is not to exceed 130 MPa at -20°C, what is the minimum diameter of the rod? Assume a=11.7μm/(m-°C) and E=200 GPa.arrow_forwardA circular rod and a 0.1-in.-thick rectangular bar are both made of a plastic material that has an elastic modulus of E = 2.3 GPa and a Poisson’s ratio of ν = 0.33. The rod and the bar are initially the same length L. After a particular load is applied, the 3.6-in.-wide rectangular bar is elongated by some amount ΔL and its width is reduced by 0.096 in. If the 1.3-in. diameter rod is stretched by the same amount ΔL, determine its change in diameter. Expansion is positive, while contraction is negative.arrow_forwardTwo blocks of mass m = 2.00 kg are connected by a vertical string of negligible mass and unknown tension Tm are hanging vertically. The higher one of these two masses is directly attached to another string of negligible mass and unknown tension T that goes over a frictionless pulley of negligible mass and is connected to a third block of mass M = 6.00 kg. The heavier block is free to slide on an incline (of angle 0 = 30.0° w.r.t. the horizontal) with coefficients of kinetic friction of µA = 0.120 and static friction µ,=0.150 between the block and the incline. The system is released from rest. !! M a) Please perform a test to determine which way the system would like to move in the absence of any friction. b) Please perform a test to determine whether the system will be able to overcome the maximum of static friction and be able to move, or remain at rest instead. c) Determine the magnitude of the normal force N exerted on the third block by the incline. d) Determine BOTH the magnitude…arrow_forward
- Mechanical Vibration Problem.arrow_forwardUnder some circumstances when two parallel springs, with constants k₁ and k2, support a single mass, the effective spring constant of the system is given by k = 4k1k₂/(k₁ + k₂). A mass weighing 20 pounds stretches one spring 4 inches and another spring 2 inches. The springs are attached to a common rigid support and then to a metal plate. As shown in the figure, the mass is attached to the center of the plate in the double-spring arrangement. k₂ II k = 20 lb Determine the effective spring constant of this system. lb/ft Find the equation of motion x(t) if the mass is initially released from the equilibrium position with a downward velocity of 6 ft/s. (Use g for the acceleration due to gravity.) 32 ft/s² x(t) = ftarrow_forwardA car has broken down in the middle of a road. Eva wants to help tow thecar to a mechanic with her 4WD. To avoid the car from slamming into Eva’s 4WD, they attach the front of the car to the back of Eva’s 4WD by a stiff spring.The broken car weighs 2000kg. The spring has a natural unstretched length of 2m and a spring constant of k = 80000N/mFor this particular gravel road, the magnitude of the drag force is proportional to the weight of the car and the speed of the car. The direction of the drag force is always opposite tothe direction of movement. This can be written asD = −cM v For this particular road we can take c = 4. Let x(t) be the position of the front of the broken car and let y(t) be the position of the back of Eva’s 4WD. We will assume that the position of Eva’s car is a known function of time.(1) By considering Newton’s law applied to the broken car, write down an ordinary differential equation for the motion of the broken car They are planning to travel at a constant…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Mechanical SPRING DESIGN Strategy and Restrictions in Under 15 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=dsWQrzfQt3s;License: Standard Youtube License