College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 19, Problem 7CQ
All humans have what is known as a blind spot, where the optic nerve exits the eye and no light-sensitive cells exist. To locate your blind spot, look at the figure of the cross. Close your left eye and place your index finger on the cross. Slowly move your finger to the left while following it with your right eye. At a certain point the cross will disappear. Is your right eye's blind spot on the right or left side of your retina? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Presbyopia is the tendency to gradually become far-sighted (hyperopic) as you age. If you have normal vision when you are young, you have a near point of 25 cm.A. If the distance between your eye's lens and retina is 1.73 cm, what is the focal length of your eye's lens when you look at an object at your near point?f = _____ cmB. As you get older, suppose that the near point of your eye increases to 46 cm. What is the focal length of your eye's lens when you look at an object at your near point now?f = _______ cmC. With your near point at 46 cm, what is the focal length of the corrective lens (placed directly in front of your eye's lens) which you would need to look at an object that is 25 cm in front of your eye?f = _____ cm
You are working in an optical research laboratory. Your supervisor requests that you build her a beam expander with
specifications required by her experiment. A beam expander is a series of two lenses on the same principal axis. A beam of laser
light covers the total area of the first lens, which focuses the parallel rays at its focal point. A second lens with a longer focal
length and a larger radius is placed on the axis so that the rays expanding from the focal point of the first lens cover the area of
the second lens. The outgoing rays of the second lens are parallel. The net result is that the diameter of the outgoing laser beam
is larger than the original beam. Your supervisor provides you with a lens of focal length f₁ = 1.30 cm. Its diameter matches that
of an incoming laser beam of diameter d₁ = 0.150 cm. She wants the beam expanded to a diameter of d₂ = 0.690 cm. She asks
you to find the following.
(a) the focal length ₂ necessary for the second lens (in cm)
cm
(b) the…
You have a thin, diverging lens. If the value of q (the distance from the image
to the mirror along the principal axis of the mirror) is -1.63cm and the
distance of p (the distance from the object to the mirror along the principal
axis of the mirror) is 21.39cm, what is the focal length of the diverging lens?
Diverging
lens
Ray 1
Ray 1
Ray 3
Object
Virtual
image
Ray 2
Principal
focal point
Secondary
focal point
-Ifl-
一I-
Note: Do not explicitly include units in your answer (it is understood the unit
is cm). Enter only a number. If you do enter a unit, your answer will be
counted wrong.
Chapter 19 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 19 - On a sunny summer day, with the sun overhead, you...Ch. 19 - Suppose you have two pinhole cameras. The first...Ch. 19 - A photographer focuses his camera on his subject....Ch. 19 - The object for a magnifier is usually placed very...Ch. 19 - A nature photographer taking a close-up shot of an...Ch. 19 - The CCD detector in a certain camera has a width...Ch. 19 - All humans have what is known as a blind spot,...Ch. 19 - Suppose you wanted special glasses designed to...Ch. 19 - You have lenses with the following focal lengths:...Ch. 19 - An 8-year-old child and a 75-year-old man both use...
Ch. 19 - A friend lends you the eyepiece of his microscope...Ch. 19 - An astronomer is using a telescope to observe two...Ch. 19 - A student makes a microscope using an objective...Ch. 19 - Is the wearer of the glasses in Figure Q19.14...Ch. 19 - Prob. 15CQCh. 19 - A collector notices a rare beetle on a tree 1.0 m...Ch. 19 - A microscope has a tube length of 20 cm. What...Ch. 19 - The distance between the objective and eyepiece of...Ch. 19 - A nearsighted person has a near point of 20 cm and...Ch. 19 - A nearsighted person has a near point of 20 cm and...Ch. 19 - A 60-year-old man has a near point of 100 cm,...Ch. 19 - A person looking through a 10 D lens sees an image...Ch. 19 - Prob. 23MCQCh. 19 - An amateur astronomer looks at the moon through a...Ch. 19 - Prob. 1PCh. 19 - A student has built a 20-cm-long pinhole camera...Ch. 19 - A pinhole camera is made from an 80-cm-long box...Ch. 19 - A photographer uses his camera, whose lens has a...Ch. 19 - An older camera has a lens with a focal length of...Ch. 19 - In Figure P19.6 the camera lens has a 50 mm focal...Ch. 19 - a. Estimate the diameter of your eyeball. b. Bring...Ch. 19 - A farsighted person has a near point of 50 cm...Ch. 19 - A nearsighted woman has a far point of 300 cm....Ch. 19 - Martin has severe myopia, with a far point of only...Ch. 19 - Mary, like many older people, has lost all ability...Ch. 19 - Prob. 12PCh. 19 - Prob. 13PCh. 19 - Rank the following people from the most...Ch. 19 - The diameter of a penny is 19 mm. How far from...Ch. 19 - A magnifier has a magnification of 4 for someone...Ch. 19 - A magnifier has a magnification of 5. How far from...Ch. 19 - A farsighted man has a near point of 40 cm. What...Ch. 19 - An inexpensive microscope has a tube length of...Ch. 19 - A standard biological microscope is required to...Ch. 19 - A forensic scientist is using a standard...Ch. 19 - A microscope with an 8.0-mm-focal-length objective...Ch. 19 - The distance between the objective and eyepiece...Ch. 19 - For the combination of two identical lenses shown...Ch. 19 - For the combination of two lenses shown in Figure...Ch. 19 - A researcher is trying to shoot a tranquilizer...Ch. 19 - The objective lens of the refracting telescope at...Ch. 19 - You use your 8 binoculars to focus on a...Ch. 19 - Your telescope has a 700-mm-focal-length objective...Ch. 19 - A narrow beam of light with wavelengths from 450...Ch. 19 - Prob. 31PCh. 19 - A ray of red light, for which n = 1.54, and a ray...Ch. 19 - Two lightbulbs are 1.0 m apart. From what distance...Ch. 19 - A 1.0-cm-diameter microscope objective has a focal...Ch. 19 - A microscope with an objective of focal length 1.6...Ch. 19 - Suppose you point a pinhole camera at a 15-m-tall...Ch. 19 - Jason uses a lens with a focal length of 10.0 cm...Ch. 19 - A magnifier is labeled 5. What would its...Ch. 19 - A 20 microscope objective is designed for use in...Ch. 19 - Two converging lenses with focal lengths of 40 cm...Ch. 19 - A converging lens with a focal length of 40 cm and...Ch. 19 - A lens with a focal length of 25 cm is placed 40...Ch. 19 - A microscope with a 5 objective lens images a...Ch. 19 - Prob. 44GPCh. 19 - A 20 objective and 10 eyepiece give an angular...Ch. 19 - The objective lens and the eyepiece lens of a...Ch. 19 - Your telescope has an objective lens with a focal...Ch. 19 - Martha is viewing a distant mountain with a...Ch. 19 - Susan is quite nearsighted; without her glasses,...Ch. 19 - A spy satellite uses a telescope with a...Ch. 19 - Two stars have an angular separation of 3.3 105...Ch. 19 - Frank is nearsighted and his glasses require a...Ch. 19 - What is the angular resolution of the Hubble Space...Ch. 19 - The Hubble Space Telescope has a mirror diameter...Ch. 19 - Once dark adapted, the pupil of your eye is...Ch. 19 - The normal human eye has maximum visual acuity...Ch. 19 - Prob. 57GPCh. 19 - Light that enters your eyes is focused to form an...Ch. 19 - Light that enters your eyes is focused to form an...Ch. 19 - Light that enters your eyes is focused to form an...Ch. 19 - Light that enters your eyes is focused to form an...
Additional Science Textbook Solutions
Find more solutions based on key concepts
49. Write full electron configuration for each element.
a. Sr
b. Ge
c. Li
d. Kr
Introductory Chemistry (6th Edition)
Choose the best answer to each of the following. Explain your reasoning. Which of the following was not a major...
Cosmic Perspective Fundamentals
Carefully examine the common sedimentary rocks shown In Figure 2.13. Use these photos and the preceding discuss...
Applications and Investigations in Earth Science (9th Edition)
Identify each of the following characteristics as belonging to cervical, thoracic, or lumbar vertebrae; the sac...
Human Anatomy & Physiology (2nd Edition)
If an egg rolls out of the nest, a mother greylag goose will retrieve it by nudging it with her beak and head. ...
Campbell Biology (11th Edition)
The bioremediation process shown in the photograph is used to remove benzene and other hydrocarbons from soil c...
Microbiology: An Introduction
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Presbyopia is the tendency to gradually become far-sighted (hyperopic) as you age. If you have normal vision when you are young, you have a near point of 25 cm.A. If the distance between your eye's lens and retina is 1.67 cm, what is the focal length of your eye's lens when you look at an object at your near point?f = _______ cmB. As you get older, suppose that the near point of your eye increases to 48 cm. What is the focal length of your eye's lens when you look at an object at your near point now?f = ________ cmC. With your near point at 48 cm, what is the focal length of the corrective lens (placed directly in front of your eye's lens) which you would need to look at an object that is 25 cm in front of your eye?f = ________ cmD. As you continue to age, the corrective lenses will no longer be sufficient to allow you to see an object that is 25 cm in front of your eye. When you are wearing your corrective lenses, suppose that you can now see objects only if they are no closer than 42…arrow_forwardMyopia is a vision defect in which O a. near object vision is clear and distant object vision is blurred Ob. near object vision is blurred and distant object vision is clear O c. near object vision is blurred and distant object vision is also blurred Od. near object vision is clear and distant object vision is also cleararrow_forwardYou have a thin, diverging lens. If the value of q (the distance from the image to the mirror along the principal axis of the mirror) is -4.47cm and the distance of p (the distance from the object to the mirror along the principal axis of the mirror) is 24.97cm, what is the focal length of the diverging lens? Object Ray 1 Principal focal point Virtual image |f| Diverging lens Ray 1 Ray 3 Ray 2 ·\ƒ\· Secondary focal pointarrow_forward
- Some lenses are shaped with one flat side and one spherically-shaped side. This shape is designed to focus parallel light rays onto a single point. In a few sentences, explain how the spherical shape of the lens' surfaces causes parallel light rays to focus on a single point. (Assume the light is travelling through air into a lens with an index of refraction greater than that of air.) Focal length Focal pointarrow_forwardMost animals—humans included—have eyes that use lenses to form images. The eyes of scallops are different. A typical scallop eye forms images largely by reflection from a mirror- like surface at the back of the eye. as shown the important features of a typical scallop eye. The lens causes very little redirection of incoming light rays; it is the spherical surface in the back of the eye that brings rays of light to a focus on the cells of the retina. (For simplicity, we’ve shown no refraction by the lens, although the lens does cause some refraction that seems to help to make the image sharper by correcting for the spherical aberration introduced by the mirror.) The reflection is due to thin-film interference from the front and back faces of 80-nm-thick transparent crystals of guanine, index n = 1.83, that are embedded in cytoplasm with index n = 1.34. The individualeyes are quite small. A typical scallop has 40 to 60 eyes, each with a 450-mm–diameter pupil and a reflecting surface at…arrow_forwarda. At what angle below the horizontal should you insert your straw in order to hit the tapioca ball?arrow_forward
- A keratometer is a device used to measure the curvature of the cornea of the eye, particularly for fitting contact lenses. Light is reflected from the cornea, which acts like a convex mirror, and the keratometer measures the magnification of the image. The smaller the magnification, the smaller the radius of curvature of the cornea. If the light source is 12 cm from the cornea and the image magnification is 0.032, what is the radius of curvature of the cornea?arrow_forwardAn optician is designing a contact lens. The material has is an index of refraction of 1.60. In order to yield the prescribed focal length, the optician specifies the following dimensions: inner radius of curvature = +2.56 cm outer radius of curvature = +2.10 cm where the inner radius of curvature describes the surface that touches the eye, and the outer radius of curvature describes the surface that first interacts with incoming light. What is the focal length of this contact lens (in cm)?arrow_forwardAn archaeologist is examining artifacts with a diverging lens. The lens has a focal length of magnitude 23.8 cm. The lens is always held between the archaeologist's eye and the object under study. However, the distance between the lens and the object is different for each object that the archaeologist observes. Determine the image location and magnification for each of the following three objects. In addition, determine whether the image is real or virtual, whether it is upright or inverted, and whether it makes the object appear larger or smaller than actual size. (a) The object lies 47.6 cm behind the lens. Determine the image location. (Enter the magnitude in cm.) |q| = cm Determine the magnification. M = Select all of the following that apply to the image formed in part (a). realvirtualuprightinvertedenlargedshrunken (b) The object lies 23.8 cm behind the lens. Determine the image location. (Enter the magnitude in cm.) |q| = cm Determine the magnification. M =…arrow_forward
- An archaeologist is examining artifacts with a diverging lens. The lens has a focal length of magnitude 23.8 cm. The lens is always held between the archaeologist's eye and the object under study. However, the distance between the lens and the object is different for each object that the archaeologist observes. Determine the image location and magnification for each of the following three objects. In addition, determine whether the image is real or virtual, whether it is upright or inverted, and whether it makes the object appear larger or smaller than actual size. (a) The object lies 47.6 cm behind the lens. Determine the image location. (Enter the magnitude in cm.) |q| = cm Determine the magnification. M = Select all of the following that apply to the image formed in part (a). realvirtualuprightinvertedenlargedshrunken (b) The object lies 23.8 cm behind the lens. Determine the image location. (Enter the magnitude in cm.) |q| = cm Determine the magnification. M =…arrow_forwardMost animals—humans included—have eyes that use lenses to form images. The eyes of scallops are different. A typical scallop eye forms images largely by reflection from a mirror- like surface at the back of the eye. as shown the important features of a typical scallop eye. The lens causes very little redirection of incoming light rays; it is the spherical surface in the back of the eye that brings rays of light to a focus on the cells of the retina. (For simplicity, we’ve shown no refraction by the lens, although the lens does cause some refraction that seems to help to make the image sharper by correcting for the spherical aberration introduced by the mirror.) The reflection is due to thin-film interference from the front and back faces of 80-nm-thick transparent crystals of guanine, index n = 1.83, that are embedded in cytoplasm with index n = 1.34. The individualeyes are quite small. A typical scallop has 40 to 60 eyes, each with a 450-mm–diameter pupil and a reflecting surface at…arrow_forwardMost animals—humans included—have eyes that use lenses to form images. The eyes of scallops are different. A typical scallop eye forms images largely by reflection from a mirror- like surface at the back of the eye. as shown the important features of a typical scallop eye. The lens causes very little redirection of incoming light rays; it is the spherical surface in the back of the eye that brings rays of light to a focus on the cells of the retina. (For simplicity, we’ve shown no refraction by the lens, although the lens does cause some refraction that seems to help to make the image sharper by correcting for the spherical aberration introduced by the mirror.) The reflection is due to thin-film interference from the front and back faces of 80-nm-thick transparent crystals of guanine, index n = 1.83, that are embedded in cytoplasm with index n = 1.34. The individualeyes are quite small. A typical scallop has 40 to 60 eyes, each with a 450-mm–diameter pupil and a reflecting surface at…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY