Concept explainers
(a)
The direction at which the wire resting on two parallel horizontal rails would accelerate due to a magnetic field
Answer to Problem 72QAP
The force on the wire due to the magnetic force will point towards the right and hence the wire will accelerate to the right.
Explanation of Solution
Given:
A steady current of 100 A passes through a wire (of weight m=40 g=0.040 kg; length = 0.8 m) that can slide on two parallel, horizontal
Formula used:
Right hand rule for the field directionIf you point your right thumb in the direction of the current and curl your fingers, the magnetic field curls around the field lines in the direction of the curled fingers of your right hand.
Calculation:
Application of the right-hand rule will give the direction of magnetic force on the wire that is initially at rest on two parallel conducting rails.
Conclusion:
The force on the wire due to the magnetic force will point towards the right and hence the wire will accelerate to the right.
(b)
The magnetic force on the wire that rests on two parallel, horizontal conducting rails.
Answer to Problem 72QAP
The magnetic force on the wire = 100 N (rounded to one significant figure)
Explanation of Solution
Given:
A steady current of 100 A passes through a wire (of weight m=40 g=0.040 kg; length = 0.8 m) that can slide on two parallel, horizontal conducting rails. A uniform magnetic field with a magnitude of 1.2 T is directed into the page.
Formula used:
The magnitude of the magnetic force acting on the wire due to a magnetic field is given by the following equation
Calculation:
The angle between the magnetic field and the force is 90 degrees as they are perpendicular to each other. Substituting the values to equation (a);
Conclusion:
The magnetic force on the wire = 100 N (rounded to one significant figure)
(c)
How long must the rails be of the wire starting from rest is to reach a speed of 200 m/s.
Answer to Problem 72QAP
The length of the rails to facilitate wire reaching a speed of 200 m/s= 8 m
Explanation of Solution
Given:
A steady current of 100 A passes through a wire (of weight m=40 g=0.040 kg; length = 0.8 m) that can slide on two parallel, horizontal conducting rails. A uniform magnetic field with a magnitude of 1.2 T is directed into the page.
Also, from the part b) above we have calculated the magnitude of magnetic force on the wire to be 96 N.
Formula used:
Calculation:
One can determine the direction of the magnetic force using the right hand rule as mentioned in part a).Assuming that the magnetic force is the only force that is acting on the wire along the horizontal direction(x direction), the wire would undergo constant acceleration towards x direction. Hence one could apply equation (b) to the motion of the wire;
Applying this result to (c)
Conclusion:
The length of the rails to facilitate wire reaching a speed of 200 m/s= 8 m
(d)
What would be the direction of the movement of the wire if the magnetic field was directed out of the page
Answer to Problem 72QAP
If the magnetic field is directed out of the page, force on the wire due to the magnetic field would point to the left and the wire would accelerate in that direction. The numerical value of the magnetic force would be the same as calculated in part b).
Explanation of Solution
Given:
A steady current of 100 A passes through a wire (of weight m=40 g=0.040 kg; length = 0.8 m) that can slide on two parallel, horizontal conducting rails. A uniform magnetic field with a magnitude of 1.2 T is directed out of the page.
Formula used:
Right hand rule for the field directionIf you point your right thumb in the direction of the current and curl your fingers, the magnetic field curls around the field lines in the direction of the curled fingers of your right hand
Calculation:
Application of the right hand rule would give the direction of movement of the wire.
Conclusion:
If the magnetic field is directed out of the page, force on the wire due to the magnetic field would point to the left and the wire would accelerate in that direction. The numerical value of the magnetic force would be the same as calculated in part b).
(e)
What would be the direction of the movement of the wire if the magnetic field was directed towards the top of the page
Answer to Problem 72QAP
If the magnetic field is directed towards to the top of the page the magnetic force on the wire would be zero because the current and the magnetic field would be antiparallel to each other.
Explanation of Solution
Given:
A steady current of 100 A passes through a wire (of weight m=40 g=0.040 kg; length = 0.8 m) that can slide on two parallel, horizontal conducting rails. A uniform magnetic field with a magnitude of 1.2 T is directed out of the page.
Formula used:
Right hand rule for the field directionIf you point your right thumb in the direction of the current and curl your fingers, the magnetic field curls around the field lines in the direction of the curled fingers of your right hand
Calculation:
The magnetic field and the current must not be antiparallel to facilitate a movement of the wire.
Conclusion:
If the magnetic field is directed towards to the top of the page the magnetic force on the wire would be zero because the current and the magnetic field would be antiparallel to each other
Want to see more full solutions like this?
Chapter 19 Solutions
COLLEGE PHYSICS
- Check Your Understanding Using Example 12.1, at what distance would P have to be to measure a magnetic field half of tire given answer?arrow_forwardCheck Your Understanding The wire loop forms a full circle of radius R and current I. What is the magnitude of the magnetic field at the center?arrow_forwardA long-rigid wire lies along the x-axis and cairns a current of 2.5 A in the positive x-direction. Around the wire is the magnetic field B=2.0i+5.0x2j, With x in meters and B in millitesla. Calculate the magnetic force on the segment of wire between x=2.0m and x=4.0m .arrow_forward
- 12.4 Check Your Understanding Two wires, both carrying current out of the page, have a current of magnitude 2.0 mA and 3.0 mA, respectively. The first wire is located at (0.0 cm, 5.0 cm) while the other wire is located at (12.0 cm, 0.0 cm). What is the magnitude of the magnetic force per unit length of the first wire on the second and the second wire on the first?arrow_forwardConsidering the magnetic force law, are the velocity and magnetic field always perpendicular? Are the force and velocity always perpendicular? What about the force and magnetic field?arrow_forwardFind the magnitude and direction of the magnetic field at the point equidistant from the wires in Figure 22.58(a), using the rules of vector addition to sum the contributions from each wire.arrow_forward
- Check Your Understanding Using Example 12.5, at what distance would you have to move the first coil to have zero measurable magnetic field at point P?arrow_forwardA 5.0-m section of a long, straight wire carries a current of 10 A while in a uniform magnetic field of magnitude 8.0103T . Calculate the magnitude of the force on the section if the angle between the field and the direction of the current is (a) 45°; (b) 90°; (C) 0°; or (d) 180°.arrow_forwardHow is the percentage change in the strength of the magnetic field across the face of the toroid related to the percentage change in the radial distance from the axis of the toroid?arrow_forward
- Check Your Understanding A uniform magnetic field of magnitude 1.5 T is directed horizontally from west to east, (a) What is the magnetic force on a proton at the instant when it is moving vertically downward in the field with a speed of 4 x 107 m/s? (b) Compare this force with the weight w of a proton.arrow_forwardIf a charged particle moves in a straight line, can you conclude that there is no magnetic field present?arrow_forwardThe two long, parallel wires shown in the accompanying figure carry currents in the same direction. If I1= 10 A and I2= 20 A, what is tire magnetic field at point P?arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College